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Abstract

Sepsis is a potentially lethal maladaptive host immune response to infection characterised by

organ dysfunction. I used data from the UK Genomic Advances in Sepsis (GAinS) study to bet-

ter understand the molecular mechanisms underlying heterogeneity in individual host immune

response.

Weighted co-expression network analysis was used to decompose the transcriptome into

modules. These modules identified pathways of pathological relevance to sepsis, including cell-

type-specific modules associated with myeloid and lymphoid cells. The modules were used to

perform module quantitative trait locus (QTL) mapping to identify genetic variants associated

with variation in gene expression. These QTL, in addition to previously mapped cis-expression

QTL (eQTL) and protein QTL (pQTL), were integrated and interpreted using Bayesian colocali-

sation and fine mapping methods. Finally, multiple functional enrichment methods integrating

publicly available data sets were explored to predict the impact of QTL in various tissues and

contexts.

These analyses provide biological insights into the genetic underpinnings of sepsis. In addi-

tion, the data generated from these analyses will be a useful resource for investigators exploring

specific variants or sources of molecular heterogeneity in sepsis.

2



Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work done

in collaboration except where specifically indicated in the text. In accordance with the Statutes

and Ordinances of the University of Cambridge, I declare that this thesis is not substantially the

same as any work that I have submitted for a degree or diploma or similar qualification. I de-

clare that my thesis does not exceed the word limit prescribed by the Biological Sciences Degree

Committee. This thesis consists of 19,979 words, exclusive of tables, footnotes, bibliography,

and appendices.

3



Collaboration

This thesis consists of analyses conducted by myself and groups involved in the Genomic Ad-

vances in Sepsis (GAinS) study. Investigators relevant to this thesis were present at either the

Wellcome Sanger Institute (WSI) or the Wellcome Centre for Human Genetics (WHG) at the Uni-

versity of Oxford. Imputation of genotyping data, processing of RNA sequencing data, genera-

tion of gene expression data, and identification of expression quantitative trait loci (eQTL) was

conducted by Katie Burnham and Wanseon Lee at the WSI. The processing of proteomics data,

generation of protein expression data, and mapping of protein quantitative trait loci (pQTL) was

conducted by Yuxin Mi from the WHG. Eddie Cano Gámez from the WHG developed the quanti-

tative Sepsis Response Signature (SRSq) score and provided the processed microarray gene ex-

pression data. Probabilistic estimation of expression residuals (PEER) factors for the microarray

gene expression data were computed by Katie Burnham. Andrew Kwok from the WHG processed

the single-cell RNA sequencing data from the Sepsis Immunomics study and ran CIBERSORTx to

estimate cell frequencies for patients with bulk RNA sequencing data. Other than these collabo-

rative elements, all analyses presented in this thesis represent my own work.

4



Acknowledgements

I would like to thank Dr. Emma Davenport and her team at the Sanger Institute for allowing me

to experience a year of exciting science. I want to especially thank Dr. Katie Burnham and Dr.

Wanseon Lee for shaping my project and their willingness to provide feedback whenever I needed

it. In addition, I would like to thank all the members of the research group for providing a friendly

and intense intellectual environment that made every conversation exciting and every day some-

thing I looked forward to.

My path to the United Kingdom and beyond has been facilitated by the unconditional support

of many people in my life. Thank you to my family - my parents and my sister - for their endless

support. I am grateful to Natalie for her constant companionship. Thank you to all the friends that

have made this year memorable. I would also be remiss not to mention some of the mentors that

have enabled my passion for science, including Dr. David Aylor, Dr. Gregory Carter, Dr. Christoph

Preuss, and Dr. Kyathanahalli Janardhan.

Finally, thank you to the Winston Churchill Foundation for funding this opportunity and to the

University of Cambridge for providing a unique atmosphere for learning.

5



Contents

List of Figures 8

List of Tables 10

List of Acronyms 12

1 Introduction 14
1.1 Genetics of Complex Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.2 Genome-Wide Association Studies . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3 Linkage Disequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Multi-omics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 The Transcriptome and Proteome . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Regulation of Molecular Expression . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 The Epigenome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Functional Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Co-Expression Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Molecular Quantitative Trait Loci . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Chromatin Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Colocalisation and Fine Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.1 Bayesian Fine Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.2 Colocalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Sepsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1 Immunological Response during Sepsis . . . . . . . . . . . . . . . . . . . . 25
1.5.2 Sepsis Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.3 Summary of cis-eQTL and pQTL . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Specific Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Methods 34
2.1 Description of Cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Analysis of Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Weighted Network Correlation Analysis . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Module Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Module Association with Clinical Endophenotypes . . . . . . . . . . . . . . 36

2.3 Molecular QTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Mapping of Module QTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Module QTL Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Colocalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Fine Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Publicly Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1 ATAC-seq Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6



CONTENTS

2.6.2 ATAC-seq Sample Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.3 ATAC-seq Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.4 Peak Annotation and Motif Enrichment . . . . . . . . . . . . . . . . . . . . . 41

2.7 Functional Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.1 Enrichment of eQTL in Functional Categories . . . . . . . . . . . . . . . . . 42
2.7.2 Partitioned Heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 Variant Effect Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Gene Co-Expression 45
3.1 Co-Expression Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Signatures of Leukocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Association with Endophenotypes . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 Module Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Module QTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 Multiple Module Eigengenes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Trait-Associated Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.3 Module QTL Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.1 Co-expression Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Relationships between Modules and Clinical Variables . . . . . . . . . . . . 66
3.3.3 Module QTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Colocalisation and Fine Mapping 68
4.1 Colocalisation of cis-eQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Colocalisation of cis-eQTL and module QTL . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Colocalisation of cis-eQTL and cis-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Colocalisation of trans-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Colocalisation with GWAS Associations . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Statistical Fine Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Conditional cis-eQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Module QTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.3 pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7.1 Colocalisation of QTL across Omics Layers . . . . . . . . . . . . . . . . . . 83
4.7.2 Colocalisation and Fine Mapping Methods . . . . . . . . . . . . . . . . . . . 84

5 Dysregulated Immune Cell Types 86
5.1 Reprocessing ATAC-seq Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Consensus and Cell-Type-Specific Peaks . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Enrichment of cis-eQTL in Genomic Annotation . . . . . . . . . . . . . . . . . . . . . 88
5.4 Partitioned Heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Variant Effect Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.1 Module 92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.2 Module 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.1 Enrichment of cis-eQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.2 Partitioned Heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7.3 Variant Effect Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7



CONTENTS

Bibliography 102

A Prior Work in GAinS 115
A.1 Genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Genotype Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3 RNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.4 Microarray Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.5 Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.6 Mapping of eQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.7 Mapping of pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Summary Statistics 119

C Publicly Available ATAC-seq Data 126

D ATAC-seq Reprocessing 129
D.1 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.2 Comparison with Original Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.3 Peak Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

E Roadmap Project Epigenomes 134

F Partitioned Heritability 136

G Variant Effect Prediction 138

8



List of Figures

1.1 Sepsis as a complex disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Dysregulated response to infection during sepsis . . . . . . . . . . . . . . . . . . . . 25
1.3 Coagulation and complement systems during sepsis . . . . . . . . . . . . . . . . . 26
1.4 Effects of sepsis on leukocyte phenotypes . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Mapping of cis-eQTL and pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Distribution of module sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Cell-type-specific enrichment of modules . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Cell marker enrichment of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Neutrophil subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Associations between module eigengenes and clinical endophenotypes . . . . . . 53
3.6 Association of module eigengenes and inferred cell frequencies . . . . . . . . . . . 55
3.7 Module 51 HIF-1 pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.8 Module 92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.9 Module QTL from module eigengenes . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.10 Composition of module QTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.11 Module QTL from top five module eigengenes . . . . . . . . . . . . . . . . . . . . . 60
3.12 Composition of module QTL from the top five module eigengenes . . . . . . . . . . 61
3.13 Replication of module eigengenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.14 Forest plot of replicated effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Number of eGenes sharing lead conditional cis-eQTL . . . . . . . . . . . . . . . . . 69
4.2 Colocalising cis-eQTL of components of the TCR β chain . . . . . . . . . . . . . . . 70
4.3 Distribution of cis-eQTL colocalising with a module QTL . . . . . . . . . . . . . . . . 71
4.4 FCGR3B locus cis-eQTL and cis-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 ORM2 locus cis-eQTL and cis-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Chromosome 16 trans-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Chromosome 14 trans-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8 Credible set sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.9 Number of signals for module QTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.10 Module QTL credible set sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.11 Number of signals for cis-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.12 Cis-pQTL credible set sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Motif enrichment in group peak sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 HOMER consensus peaks annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Enrichment in ENCODE cCREs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Enrichment in immune atlas peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Enrichment in neutrophil atlas peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 CHEERS enrichment of cis-eQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 GoShifter overlap score matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9



LIST OF FIGURES

5.8 Partitioned heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.9 VEP gene consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10 VEP change in motif score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.11 NLRC5 GoShifter overlap scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.12 Module 92 eigengene heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.13 RPS26 GoShifter overlap scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.1 TSS enrichment scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.2 Distribution of peak widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.3 Distribution of peaks across the genome . . . . . . . . . . . . . . . . . . . . . . . . 131
D.4 Correlation of read counts between peaks . . . . . . . . . . . . . . . . . . . . . . . . 131
D.5 Group peak sets from immune atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
D.6 Cell type peak sets from immune atlas . . . . . . . . . . . . . . . . . . . . . . . . . . 133
D.7 Group peak sets from neutrophil atlas . . . . . . . . . . . . . . . . . . . . . . . . . . 133

E.1 Enrichment in ChromHMM states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

G.1 VEP regulatory consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
G.2 VEP module QTL gene consequences . . . . . . . . . . . . . . . . . . . . . . . . . . 139
G.3 VEP module QTL regulatory consequences . . . . . . . . . . . . . . . . . . . . . . . 140

10



List of Tables

3.1 Key genes in modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 IMD-relevant traits in the EBI GWAS Catalog . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Colocalisation of cis-eQTL with cis-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Proteins with cis-pQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Colocalisation of module QTL with GWAS variants . . . . . . . . . . . . . . . . . . . 78

B.1 Summary statistics from GWAS analyses . . . . . . . . . . . . . . . . . . . . . . . . 119
B.2 EBI GWAS and module QTL overlap studies . . . . . . . . . . . . . . . . . . . . . . . 119

C.1 Samples in immune atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.2 Samples in neutrophil atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E.1 Roadmap Project epigenomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

G.1 VEP module QTL motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11



List of Acronyms

1000G 1000 Genomes

ANOVA analysis of variance
APC antigen-presenting cell
ATAC-seq assay for transposase-accessible

chromatin using sequencing

CAP community-acquired pneumonia
cCRE candidate cis-regulatory element
CD-CV common disease-common variant
cDNA complementary DNA
ChIP-seq chromatin immunoprecipitation

sequencing
CS credible set
CTCF-only (ENCODE cCRE Type) not

TSS-overlapping and with high DNase
and CTCF signals only

DAMP damage-associated molecular
pattern

DE differentially expressed
dELS (ENCODE cCRE Type) TSS-distal

enhancer-like signature
DNA deoxyribonucleic acid
DNase-H3K4me3 (ENCODE cCRE Type) not

TSS-overlapping and with high DNase
and H3K4me3 signals only

DNase-seq DNase I hypersensitivity sites
sequencing

EBI European Bioinformatics Institute
eGene gene with expression quantitative

trait loci
ENCODE Encyclopedia of DNA Elements
eQTL expression quantitative trait locus

FDR false discovery rate
FIMO find individual motif occurrences
FP faecal peritonitis

GAinS Genomic Advances in Sepsis

GEO Gene Expression Omnibus
GES generalised eta squared
GRCh38 Genome Reference Consortium

human build 38
GRM genetic relationship matrix
GWAS genome-wide association study

hg19 human genome build 19
HGI Human Genetics Informatics
HLA human leukocyte antigen
HRC Haplotype Reference Consortium

IBD identical by descent
IBSS iterative Bayesian stepwise selection
ICU intensive care unit
IFITM interferon-induced transmembrane

protein
IgG immunoglobulin G
IMD immune-mediated disease

kb kilobase

LC-MS-MS liquid chromatography with tandem
mass spectrometry

LD linkage disequilibrium
LMM linear mixed model
logCPM log-transformed counts per million
LPS lipopolysaccharide

MAF minor allele frequency
MAPQ mapping quality
MARS Molecular Diagnosis and Risk

Stratification of Sepsis
Mb megabase
MHC major histocompatibility complex
miRNA microRNA
MPRA massively parallel reporter assay
MR Mendelian randomisation
mRNA messenger RNA

NCBI National Center for Biotechnology
Information
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NET neutrophil extracellular trap
NK natural killer
NMD nonsense-mediated decay

OCV one causal variant

PAMP pathogen-associated molecular
pattern

PC principal component
PEER probabilistic estimation of expression

residuals
pELS (ENCODE cCRE Type) TSS-proximal

enhancer-like signature
pGene gene with protein quantitative trait

loci
PIP posterior inclusion probability
PLS (ENCODE cCRE Type) promoter-like

signature
pQTL protein quantitative trait locus
PRR pattern recognition receptor
PWM position weight matrix

QTL quantitative trait locus

REML restricted maximum likelihood
RNA ribonucleic acid
RNA-seq RNA sequencing

SARS-CoV-2 severe acute respiratory syndrome
coronavirus 2

scRNA-seq single-cell RNA sequencing
SEA simple enrichment analysis
SNP single nucleotide polymorphism
SRA Sequence Read Archive
SRS sepsis response signature
SRS1 sepsis response signature 1
SRS2 sepsis response signature 2
SRSq quantitative sepsis response

signature
SuSiE sum of single effects
SVD singular value decomposition

Treg regulatory T cell
TAD topologically associating domain
TCR T cell receptor
TF transcription factor
TLR toll-like receptor
TOM topological overlap metric
TSS transcription start site
TTS transcription termination site
TWMR transcriptome-wide Mendelian

randomisation

UTR untranslated region

VEP Variant Effect Predictor

WGCNA weighted gene co-expression
network analysis
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1 | Introduction

The objective of this thesis is to explore the genetic mechanisms underlying variation in gene and

protein expression in sepsis. Sepsis is a complex disease induced by infection that presents with

broad clinical heterogeneity. A better understanding of this heterogeneity in the host immune

response is critical for the identification of biomarkers and the development of novel therapeutic

strategies. Although mortality from infection is heritable (Sørensen et al. 1988), genome-wide as-

sociation studies (GWASs) have had limited success in sepsis. Functional genomics approaches,

including the mapping of molecular quantitative trait loci (QTL), have proven to be more effective

in dissecting clinical heterogeneity and are currently being explored as a part of the Genomic

Advances in Sepsis (GAinS) study.

In this thesis, I will use functional genomics techniques to characterise the mechanisms

through which QTL produce molecular and clinical heterogeneity. I will integrate genotype, tran-

scriptomic, and proteomic layers from the GAinS cohort. In addition, I will use publicly available

resources to characterise the molecular effects of QTL and the cell types through which they act.

The goal of these investigations is to generate deeper biological insights into variation in gene

and protein expression to inform therapeutic strategies for sepsis.

1.1 Genetics of Complex Diseases

Complex diseases have a polygenic basis and substantial influence from environmental factors,

making them a biomedical and therapeutic challenge. The polygenic architecture of complex

diseases is complicated by the presence of many common variants in the population that exert

small effects on the disease phenotype. In addition, the role of epistatic interactions between

causal loci remains poorly understood. Epistasis and environmental influence can produce vari-

able penetrance and expressivity of disease-associated phenotypes. Thus, patients with com-

plex diseases present with clinical, phenotypic, and molecular heterogeneity. One of the central

challenges this heterogeneity presents is the inability to clearly define what specific set of re-

quirements should be used to define the disease case and how therapeutic strategies should be
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developed to target patient-specific biology.

Environmental Factors
 • Access to health care
 • Timing of sepsis therapy
 • Treatments initiated

Pathogen Factors
 • Virulence factors
 • Antimicrobial resistance
 • Co-infection and synergism 
   between pathogens

Host Factors
 • Genetic predisposition
 • Epigenetics
 • Comorbidities
 • Concurrent medication
 • Social and demographic
   factors
 • Age, sex, or ethnic origin

Sepsis

Figure 1.1: Sepsis as a complex disease. The dysregulated immune response to infection is associated with a
confluence of host, environmental, and pathogen factors. Adapted from Goh et al. 2017

Sepsis is considered a complex disease (Figure 1.1). Sepsis is defined as a potentially lethal,

maladaptive condition of organ dysfunction caused by a dysregulated host immune response to

infection (Singer et al. 2016). The sepsis phenotype can be described through various modalities,

including susceptibility to infection, the degree of organ dysfunction, disease severity, response

to treatment, and outcome. In addition to host genetics, sepsis is modulated by multiple host,

environmental, and pathogenic factors. Factors that tend to affect all complex diseases include

comorbidity, concurrent medications, age, sex, social and demographic factors, access to treat-

ments, and the treatments used during the course of the disease. In addition to these, sepsis

presents a unique challenge to study because it is also influenced by factors associated with the

infecting pathogen such as pathogen-specific immune response, co-infection, and the microbial

genome (Goh et al. 2017). In contrast with commonly studied complex traits and diseases, the

host sepsis phenotype is only observed after initial infection. Thus, even after factoring in family

history, it is nearly impossible to demarcate true non-susceptible controls within the population.

In addition, it is particularly challenging to assemble and recruit sepsis cohorts due to the re-

quirement of an initial infection and the clinical challenges surrounding patient care during acute

illness.
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1.1.1 Heritability

When considering the genetic predisposition to a disease, it is important to address the concept

of heritability. Heritability is not a measure of individual inheritability, which is a function of the

genetic architecture and method of inheritance, but rather a population-level metric to quantify

the amount of phenotypic variation that is explained by genetic variation.

Heritability in the broad sense H2 is formally defined as the ratio of genotypic variance σ2
G to

phenotypic variance σ2
P . An offspring generally shares up to one allele that is identical by descent

(IBD) with a parent, which means that dominance and interactive genotypic effects do not play a

role in phenotypic resemblance. As such, heritability generally refers to heritability in the narrow

sense h2, which is defined as the ratio of additive genotypic variance σ2
A to phenotypic variance

σ2
P . Narrow-sense heritability can be estimated using regression-based approaches across the

population. The simplest method is to take the slope of the regression between offspring phe-

notypic values and the midparent phenotypic values, although more sophisticated methods us-

ing linear mixed models (LMMs) are commonly used for efficient estimation in populations with

mixed relatedness (Visscher et al. 2008). Recent methodological advances (Yang et al. 2011;

Gusev et al. 2014; Finucane et al. 2015) allow for the estimation of the contribution from spe-

cific regions of the genome towards heritability. These methods partition the heritability of a trait

based on genomic annotations using variance components models.

1.1.2 Genome-Wide Association Studies

The sequencing of the human genome and subsequent technological progress in genotyping

human variation has allowed for the development of an analytical strategy called the GWAS. In

contrast with traditional pedigree-based linkage analyses, GWASs utilise unrelated individuals in

the population to associate genotypes with observed phenotypes. GWASs exploit linkage dise-

quilibrium (LD), defined as the nonrandom association of alleles at two different loci within the

population, to identify genomic regions associated with disease without the need to test all poly-

morphisms in the population. For statistical and genotyping simplicity, the most commonly used

genetic variants are single nucleotide polymorphisms (SNPs).

The GWAS analytical strategy was based on the common disease-common variant (CD-CV)

hypothesis that common diseases are caused by common variants with moderate effects.

GWASs have successfully uncovered many of these trait-associated variants in complex dis-

eases. However, the surprising discovery has been that trait-associated variants identified using

GWASs do not explain the observed phenotypic variance. Specifically, narrow-sense heritabil-
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ity estimates from regression-based approaches are typically much larger than the proportion

of observed phenotypic variance explained by significant trait-associated variants from GWASs

(Manolio et al. 2009).

The field has worked to genotype ever-larger cohorts to detect variants with even smaller

effects based on the hypothesis that complex diseases may be caused due to thousands of

common variants with very small effects. Others have proposed that common diseases may

arise due to rare variation with large effects undetected in genotyping arrays. The generally ac-

cepted model is that complex traits arise from thousands of common variants with small effects,

with rare variation also contributing to heritability. The omnigenic model proposes that a small

number of variants with large effects are concentrated around core pathways that are biologi-

cally relevant to the expression of the phenotype, while a bulk of the heritability is spread across

the genome in variants for peripheral genes that affect the core genes through trans-regulatory

networks (Boyle et al. 2017).

1.1.3 Linkage Disequilibrium

For any pair of loci, LD can be quantified by comparing the observed co-occurrence of alleles

against what is expected by chance based on the allele frequencies in the population, with larger

deviations from expectation signifying more LD. The structure of LD is tied to the evolutionary and

ancestral history of the population. Specifically, LD arises through selective sweeps, effects of

genetic bottlenecks and random drift, and admixture that introduces novel variation into the pop-

ulation. Without the effects of selection, migration, and random drift, LD tends to decay through

recombination (Slatkin 2008).

LD makes it challenging to identify the causal variants responsible for associated traits. The

causal variant is often tagged by multiple variants in high LD, inducing spurious associations

between non-causal variants and the trait of interest. Thus, although significant associations

may identify causal genetic loci, the strength of association between variants in high LD cannot

be reliably used to identify the causal variant within an associated region.

1.2 Multi-omics

Multi-omics strategies are concerned with the generation and integration of data from high-

throughput assays for multiple “omes”, such as the genome, epigenome, transcriptome, pro-

teome, and microbiome.
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1.2.1 The Transcriptome and Proteome

The transcriptome refers to the entire set of RNA transcripts that may be expressed from the

genome in a tissue of interest. Transcriptomes were initially assayed in a high-throughput manner

using microarrays with probes designed to detect the quantity of a large number of transcripts.

However, this technique relies heavily on a priori knowledge of transcripts. A more comprehen-

sive approach is to use RNA sequencing (RNA-seq), which uses DNA sequencing technology to

assay the transcriptome in an unbiased manner. In addition to quantifying transcripts, RNA-seq

provides the opportunity to detect novel transcripts, quantify allele-specific expression, and iden-

tify splicing events.

Similar to the transcriptome, the proteome refers to the entire set of proteins that may be

expressed from the genome in a tissue of interest. Techniques to assay the proteome can be di-

vided into targeted and untargeted approaches. Similar to microarrays, targeted approaches are

used to detect a preset library of proteins using affinity-based methods such as antibodies (Gold

et al. 2010; Assarsson et al. 2014). Untargeted approaches are primarily based on mass spec-

trometry and face different challenges, such as the large variation in concentration of proteins in

plasma.

In this thesis, I use gene expression data from RNA-seq and protein expression data from

mass spectrometry. Due to the difficulty in obtaining samples from the critical illness setting,

these data are derived from whole blood, which presents unique challenges when interpreting

results.

1.2.2 Regulation ofMolecular Expression

Quantification of the transcriptome and proteome provides a snapshot of the molecular state of

a tissue. The quantity of molecules in a cell at any given time is tightly regulated through a diverse

set of mechanisms that encode logic for basal tissue-specific functions and stimuli-specific re-

sponses. The regulatory code is itself encoded in the genome, and variation in genotype directly

affects the regulation of expression.

Regulation of transcription occurs through functional elements such as promoters, enhan-

cers, and silencers. Other functional elements in the genome such as topologically associating

domains (TADs) and insulators can regulate local clusters of gene expression. Post-transcriptio-

nal modifications such as splicing and polyadenylation affect messenger RNA (mRNA) stability

and function. mRNA can be degraded via nonsense-mediated decay (NMD) or the action of mi-

croRNAs (miRNAs). After translation into proteins, a variety of post-translational modifications
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can alter protein function, localisation, and degradation.

Regulation of gene expression can be affected drastically by change in context. For instance,

around 20% of the expressed leukocyte blood transcriptome is differentially expressed in sepsis

patients compared to healthy subjects independent of the source of infection (Peters-Sengers

et al. 2022).

1.2.3 The Epigenome

The epigenome refers to the set of chemical and steric configurations of chromatin that affect

genome function. In this thesis, I use publicly available epigenomic data from various primary

immune cell types to better understand which cell types may be affected by genotypic variation

relevant to sepsis. Specifically, I focus on methods of detecting chromatin accessibility, which

quantify how accessible regions of the genome are to factors that influence gene expression.

Variation in chromatin accessibility is described in low resolution in the form of euchromatin and

heterochromatin. More recently, high resolution characterisation of the epigenome using DNase

I hypersensitivity sites sequencing (DNase-seq) and assay for transposase-accessible chromatin

using sequencing (ATAC-seq) can nominate loci in the genome that are accessible to regulatory

factors and primed for cell-type-specific responses (Boyle et al. 2008; Buenrostro et al. 2013).

ATAC-seq is performed by using a hyperactive Tn5 transposase to simultaneously cut regions

of accessible chromatin and ligate sequencing adapters. Regions of the genome that present

less steric hindrance are more accessible to incorporation by transposase. Thus, the number of

reads that align to a region of the genome is a readout of the level of accessibility (Buenrostro

et al. 2013; Yan et al. 2020).

1.3 Functional Genomics

Functional genomics is concerned with describing the functions of genes and their molecular

products. Below, I discuss some of the functional genomics tools used in this thesis.

1.3.1 Co-Expression Networks

Genes that are induced under similar conditions or under similar regulatory control tend to have

correlated measures of expression. For example, genes that respond to a specific stimulus, are

activated by a common trans factor, or belong to the same gene regulatory network are expected

to be co-expressed. Since genes have multiple functions across various tissues and conditions,
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co-expression patterns can resolve gene products that interact during specific responses, iden-

tify regulators of broad transcriptomic programs, and group genes by functional and biological

relevance in a disease context (Dam et al. 2018).

Co-expression is described using networks. Genes represent vertices in the network and

edges represent some measure of association between connected pairs of genes. Givenn genes,

an n × n similarity matrix S = [sij ] represents the initial observed structure from the gene ex-

pression data. A similarity function such as sij = |cor(Xi,Xj)| can be used to define similarity

between the i-th and j-th genes. This matrix is transformed into the adjacency matrix for the net-

work A = [aij ] using some monotone adjacency function aij = f(sij). The motivation for this

additional step is to impose constraints on the network. In weighted gene co-expression network

analysis (WGCNA), a popular method for co-expression analysis, the adjacency function is used

to approximate the scale-free topology observed in many biological and non-biological contexts

(Barabási et al. 1999; Zhang et al. 2005). The co-expression network contains substructure, in

that specific well-connected subgraphs capture different biological functions. These subgraphs,

called network modules, are extracted from the network using various clustering approaches.

Modules can be differentially co-expressed between disease states and conditions, which can

assist in the identification of disease-relevant processes and regulators (Dam et al. 2018).

1.3.2 Molecular Quantitative Trait Loci

A QTL is a variant that is associated with a quantitative trait. That is, the genotype of the vari-

ant in an individual is predictive of some measured phenotypic quantity. In this thesis, I focus

specifically on expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL),

which are variants associated with the quantity of mRNA and protein respectively. QTL are of-

ten present in functional elements in the genome involved in gene and protein regulation. The

approach to mapping QTL in human populations is based on the GWAS. An additional challenge

to QTL mapping compared to the GWAS, however, is unbiased multiple testing correction. False

discovery rate (FDR) corrections traditionally used in GWASs are too stringent for eQTL discov-

ery and do not account for biases between cis loci introduced by different LD structure, number

of SNPs, and minor allele frequencies. Specialised methods such as permutation-based strate-

gies and hierarchical gene-centric approaches are required to appropriately control the FDR while

maximising power of discovery in an unbiased manner (Huang et al. 2018).

Due to the large multiple-testing burden and small effect sizes when testing all variants agai-

nst all genes and proteins, studies with small cohorts tend to focus on mapping cis-QTL. In this

analysis, variants near the transcription start site (TSS) are tested for association with the cog-
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nate gene or protein, implying a cis mode of action. However, there is increasing interest in map-

ping trans-QTL, especially since a large proportion of heritability is explained in trans but large

cohorts are required.

The common method for QTL mapping is to use linear models or LMMs. In either case, it

is important to control for effects of population stratification and technical variation between

samples. Principal components (PCs) from the genotype data or kinship matrices are the most

popular methods to control for population stratification. Although technical covariates such as

batch and sample quality metrics can be included, latent variable approaches such as probabilis-

tic estimation of expression residuals (PEER) (Stegle et al. 2012) or PCs of expression can assist

in controlling measured and unmeasured sources of technical variation when mapping molecular

QTL.

1.3.3 Chromatin Accessibility

ATAC-seq peaks are regions of the genome that are enriched for ATAC-seq reads. Most ATAC-

seq analyses utilise count-based methods and assume a Poisson background read distribution

to call peaks and assign significance. The peaks are used for multiple downstream analyses.

Different peaks are detected in different tissues and contexts, which can be used to infer regions

of the genome that are important for context-specific regulation. Peaks can be annotated to

characterise this context-specific accessibility profile. This includes simple genome metrics such

as distance to the closest gene and motif enrichment tests that attempt to identify upstream trans

factors that target detected peaks in a condition (Yan et al. 2020).

1.4 Colocalisation and FineMapping

1.4.1 Bayesian FineMapping

Association analyses such as the GWAS and QTL mapping tend to nominate multiple SNPs in

LD as potentially causal. Statistical fine mapping methods have been developed to reduce the

set of candidate causal SNPs at a locus. Early methods included using SNPs that tagged the

lead variant at a certain heuristic LD threshold or joint SNP regression with shrinkage. Recently,

a new suite of Bayesian fine mapping tools have been developed to identify smaller subsets of

potentially causal variants. These models use the observed strength of association between

SNPs and the trait of interest in addition to the underlying LD structure to quantify evidence for

causal configurations at a locus. At a locus with k SNPs, a causal configuration is a binary vector
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γ ∈ {0, 1}k. For each causal configuration, γi = 0 indicates that the i-th SNP is not causal, while

γi = 1 indicates that the i-th SNP is causal. Bayesian fine mapping methods generally have a

prior distribution P(Mγ) for each causal configuration γ. Using Bayes’ rule, the evidence for a

causal configuration given the association data D is

P(Mγ | D) =
P(D | Mγ)P(Mγ)∑
M P(D | M)P(M)

The likelihood of the data given the causal configuration, P(D | Mγ), is based on the associa-

tion summary statistics. Fine mapping methods assume standard association tests based on

linear models. Thus, the likelihood for the data is often based on the vector of effects β from the

regression such that

P(D | Mγ) =

∫
P(D | β)P(β | Mγ) dβ

An appropriate prior on β is also specified. The posterior inclusion probability (PIP) is often used

to summarise the evidence for any given SNP being causal. The PIP for the i-th SNP is defined

as

P(γi = 1 | D) =
∑

γ:γi=1

P(Mγ | D)

which is the sum of the evidence for all causal configurations where the i-th SNP is causal. A

common method to characterise the uncertainty surrounding the causal SNP is to generate a

credible set (CS) of SNPs that, taken together, captures a set amount of posterior density. When

we assume one causal variant (OCV) at a locus, the 95% CS is generated by ordering SNPs in

decreasing order by PIP and taking the top m SNPs such that the sum of PIPs is greater than

0.95 (Schaid et al. 2018).

Recent models such as CAVIARBF and FINEMAP have relaxed the OCV assumption to search

for at most L signals. CAVIARBF is an example of an exhaustive approach that attempts to enu-

merate all possible configurations with up to L signals. In contrast, FINEMAP and other algo-

rithms such as DAPG and GUESSFM attempt to perform a smart search of the space of causal

configurations to reduce computational time and increase the number of independent signals

that can be jointly modelled at a locus (Hutchinson et al. 2020). FINEMAP, for instance, uses a

shotgun stochastic search to efficiently explore causal configurations with up to L causal vari-

ants. In this approach, FINEMAP takes an initial configuration and performs a series of edits to

identify neighbouring configurations. Using the unnormalised posterior density for each of these

potential configurations as weights, FINEMAP then samples the edited configurations to identify

the next configuration. This iterative procedure is repeated to identify a subset of all possible
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configurations that are then used to approximate P(Mγ | D) and the PIP for each SNP (Benner

et al. 2016).

The sum of single effects (SuSiE) regression model is a novel approach to the fine mapping

problem. In this formulation, the ℓ-th independent signal at a locus is represented by an effect

vector βℓ = βℓγℓ, where βℓ represents the effect size of the signal and γℓ represents the causal

configuration of the signal. These single effect vectors are estimated using a new approach called

iterative Bayesian stepwise selection (IBSS). Each iteration of IBSS involves fixing L − 1 effect

vectors, deriving residuals of the trait after using a model with the fixed L− 1 effect vectors, and

estimating the leftover effect vector using the analytical solution to the single effect regression

model on the residuals (Wang et al. 2022a).

1.4.2 Colocalisation

Colocalisation can be considered an extension of the Bayesian fine mapping model. To demon-

strate, I will use the COLOC method as an example of enumeration-based Bayesian colocalisation

methods (Giambartolomei et al. 2014). At a locus with k SNPs that has been associated with two

traits in different cohorts, a causal configuration is now a pair of binary vectors γ, δ ∈ {0, 1}k. A

strong OCV assumption is used in COLOC, which reduces the model space to (k + 1)2 possible

configurations from 4k. Each model Mγδ can be assigned to one of five mutually exclusive sets

based on these hypotheses:

H0: Neither trait is associated with the locus

H1: Only the first trait is associated with the locus

H2: Only the second trait is associated with the locus

H3: Both traits are associated, but with different SNPs

H4: Both traits are associated with the same SNP

Evidence for each hypothesis is then

P(Hi | D) ∝
∑

M∈Hi

P(D | M)P(M)

and the posterior odds for any hypothesis in reference to the null H0 is given by

P(Hi | D)

P(H0 | D)
=

∑
M∈Hi

P(D | M)

P(D | M0)
× P(M)

P(M0)

where M0 ∈ H0 is the only configuration in the null set. Similar to the fine mapping methods,

a prior is specified for each causal configuration P(Mγδ) and the vector of effects from the re-
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gression β. In COLOC, Wakefield’s method is used to calculate approximate Bayes’ factors and

the prior odds are constructed for each configuration from prior per-SNP probabilities (Giambar-

tolomei et al. 2014).

The OCV assumption is unrealistic for most trait-associated loci, which are often composed of

multiple independent causal variants (Yang et al. 2012). If iterative forward regression is used to

identify sets of independently associated SNPs at a locus, signals can be conditioned on before

using colocalisation methods. Bayesian fine mapping models are much more challenging to

integrate into colocalisation methods. Although independent signals can be detected and the

lead SNP from a credible set can be conditioned on, the joint inference over SNPs and uncertainty

for each signal is lost in the process. The SuSiE reformulation, in comparison, can be directly

integrated into the COLOC model, making it ideal for relaxing the OCV assumption in COLOC

directly rather than following a two-step method to condition on independent signals (Wallace

2021).

1.5 Sepsis

Sepsis is defined as a potentially lethal, maladaptive condition of organ dysfunction caused by

a dysregulated host immune response to infection (Singer et al. 2016). Sepsis poses a substan-

tial worldwide burden, with an estimated 5.3 million deaths annually (Poll et al. 2017). The initial

site of infection can vary between individuals, with the most common causes being respiratory

infections followed by intra-abdominal and urinary tract infections (Angus et al. 2013). Although

sepsis can be induced by a diverse range of pathogens interacting with a variety of pattern recog-

nition receptors (PRRs) in the immune system (Takeuchi et al. 2010), the sepsis transcriptomic

response in blood is largely independent of source and causative pathogen (Burnham et al. 2017).

These transcriptomic responses are also similar to those induced by other non-infectious trauma,

such as burn injuries (Xiao et al. 2011) or non-infectious respiratory distress (Scicluna et al. 2015).

These observations indicate that in addition to infection, the septic response may be a more gen-

eral immune response to extreme stress or trauma and that observed clinical heterogeneity may

be due to a common set of underlying biological mechanisms.
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1.5.1 Immunological Response during Sepsis

Figure 1.2: Dysregulated response to infection during sepsis. Sepsis is characterised by profound dysregulation of
the normal immune response to infection. Certain components of the immune system induce excessive inflammation
and cause tissue damage, while other components are pathologically suppressed. Image from Poll et al. 2017.

The normal immune response to infection is composed of an acute pro-inflammatory phase, fol-

lowed by a concomitant anti-inflammatory phase after the infection is resolved. The pro-inflam-

matory phase is concerned with eliminating the pathogen through recognition of the pathogen,

recruitment of effector immune cells, and activation of supporting systems such as complement

and coagulation. Non-effector tissues are also modulated to support the immune response, such

as vasodilation to promote inflammation in the infected region. The goal of the anti-inflammatory

phase is to attenuate the immune response after the pathogen is eliminated. Both the acute pro-

inflammatory and later anti-inflammatory phases are dysregulated in patients with sepsis (Figure

1.2), who show signs of excessive inflammation and excessive immune suppression (Poll et al.
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2017). The septic response compromises respiratory, cardiac, kidney, and brain function (Angus

et al. 2013), demonstrating systemic effects that extend beyond the initial site of infection. The

processes involved in excessive inflammation and excessive immune suppression in sepsis are

discussed below.

§ Excessive Inflammation

Figure 1.3: Coagulation and complement systems during sepsis. The serum proteome includes components of
the coagulation cascade and complement system that are released by the liver and activated during the response to
infection. Image from Poll et al. 2017.

Sepsis is characterised by excessive inflammation that occurs due to an interplay between ef-

fector cells of the immune system, the coagulation system, the complement system, and other

non-effector tissues that support the course of inflammation.

The pathogen is detected prospectively through pathogen-associated molecular

patterns (PAMPs) by PRRs and retrospectively through damage-associated molecular patterns

(DAMPs) from tissue damage caused by the pathogen. The release of DAMPs due to damage

caused by the immune system, in addition to or in the absence of the pathogen, can create a

vicious cycle of sustained immune response (Chan et al. 2012).

The complement system consists of a repertoire of intravascular proteins with antimicrobial

properties that are activated through protein-protein interactions during the innate immune re-

sponse and are responsible for recruiting and activating effector cells, targeting microbes directly,
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and assisting in the maintenance of an active immune response (Figure 1.3). Sepsis is charac-

terised by elevated levels of complement proteins. The excessive activation of the complement

system can cause organ damage and result in the release of DAMPs (Guo et al. 2005).

Although the coagulation system is generally associated with tissue repair following trauma,

the coagulation system is activated by neutrophils during infection in a process called immuno-

thrombosis (Figure 1.3) and has potent antimicrobial functions (Engelmann et al. 2013). The

coagulation system is dysregulated during sepsis and results in microvascular thrombosis and

haemorrhage due to the consumption of clotting factors (Levi et al. 2017). This process is simul-

taneously associated with excessive platelet activation and consumption, which has also been

linked with organ injury through several mechanisms (Stoppelaar et al. 2014). Immunothrom-

bosis is associated with the formation of neutrophil extracellular traps (NETs), which consist of

DNA, histones, and serine proteases that are released by the neutrophil to entrap pathogens.

NETs promote thrombosis by acting as scaffolds for platelet aggregation and have been associ-

ated with organ dysfunction in sepsis at elevated levels (Czaikoski et al. 2016). The dysregulation

of immunothrombosis and NET formation may be driven by the rapid expansion of neutrophils

during the innate immune response. Indeed, a recent study has implicated the expansion of a

subset of immature neutrophils that are unique to sepsis and differ from neutrophilia observed

in the normal immune response to infection (Kwok et al. 2022).

Taken together, excessive inflammation in sepsis is characterised by a profound dysregula-

tion of the intertwined immune, coagulation, and complement response to infection.
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§ Excessive Immune Suppression

Figure 1.4: Effects of sepsis on leukocyte phenotypes. Leukocytes are affected differently by protracted sepsis, with
some cellular functions being suppressed by anti-inflammatory signalling or via apoptosis. Image from Hotchkiss et
al. 2013

At a cursory glance, excessive immune suppression during and following sepsis directly contra-

dicts the exaggerated immune activation observed in sepsis. However, a key observation in early

studies was an increased susceptibility to infections during and following survival from sepsis

(Boomer et al. 2011). Patients experiencing sepsis and other non-infectious trauma experience

increased incidence of viral reactivation and infection (Luyt et al. 2007; Goh et al. 2020). This im-

munosuppression is associated with lymphocyte exhaustion, which consists of decreased lym-

phocyte count and reduced lymphocyte activity (Figure 1.4). Immunosuppression in sepsis also

involves reprogramming of professional antigen-presenting cells (APCs) such as macrophages

and dendritic cells (Poll et al. 2017).

Apoptosis during sepsis drives a strong reduction in CD4+ T cells, CD8+ T cells, B cells, and

dendritic cells. In addition, natural killer (NK) cells and CD4+ T helper cell subsets demonstrate

reduced activity that is consistent with T cell exhaustion. Regulatory T cells (Tregs), which are

responsible for attenuating the immune response, are more resistant to sepsis-induced apoptosis
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and also lead to the reduction of effector T cell function (Hotchkiss et al. 2013). The immature

sepsis neutrophils identified recently also demonstrated the ability to suppress the activity and

proliferation of CD4+ T cells in a co-culture system (Kwok et al. 2022).

Professional APCs are reprogrammed during sepsis. Macrophages and dendritic cells have

reduced HLA-DR expression, which is required for antigen presentation (Hotchkiss et al. 2013). In

addition, macrophages enter an immunosuppressive phenotype similar to that observed during

endotoxin tolerance (Poll et al. 2017).

1.5.2 Sepsis Genomics

Components of the immune system demonstrate substantial diversity between individuals. This

diversity is deeply rooted in our evolutionary relationship with infectious agents. The evolutionary

arms race between pathogens and humans necessarily runs into a generational time asymmetry

— humans cannot outcompete pathogens using one antimicrobial strategy. Instead, evolution

has favoured a huge diversity of immune activations and responses that vary in intensity be-

tween individuals. For a specific individual, immune diversity provides an evolutionary advantage

because it increases the chance that a pathogen from a prior host will not have adapted to the

immune response of the new host. Thus, although most humans have conserved immune re-

sponses maintained through strong purifying selection, they differ in the degree to which they

are primed for different types of immune responses. These differences increase as humans en-

counter perturbations and new environments. The immune system is also under the genetic

control of the most polymorphic genes in the genome (Liston et al. 2021). This immune diver-

sity underpins the clinical and molecular heterogeneity observed in the response to infection and

during sepsis.

The heritability of poor outcome during sepsis was strikingly observed in a study comparing

risk of death by infection in adoptees to the risk of death by infection for biological and adoptive

parents (Sørensen et al. 1988). In spite of evidence for heritability, the most recent analyses of

28-day outcome in sepsis patients failed to uncover any genome-wide significant associations

(Rautanen et al. 2015; Scherag et al. 2016). One explanation for the failure of GWASs with 28-day

endpoint is that the genetic component of sepsis may be explained by genetic predisposition for

either susceptibility to infection or organ failure (Angus et al. 2013). For instance, GWASs have

identified genetic associations with response to specific pathogenic agents such as severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) (Niemi et al. 2021), tuberculosis (Curtis et al.

2015), and some other common infections (Tian et al. 2017). Since sepsis is exacerbated by

comorbidity with certain conditions, genetic predisposition for these related disorders may also
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contribute to shared genetic mechanisms of immune dysregulation (Angus et al. 2013). Another

explanation is that the initial estimate of heritability overestimates the current heritability of mor-

tality from infection due to improved clinical care, in which case deeper phenotyping of sepsis

cohorts is required to better understand the observed patient heterogeneity. Thus, recent inquiry

into the genetic underpinnings of sepsis has focused on drivers of molecular variation in diseased

patients.

The GAinS study is a collective effort to perform deep phenotyping of molecular variation in

adult sepsis patients presenting to the intensive care unit (ICU). The study recruited adults with

community-acquired pneumonia (CAP) or faecal peritonitis (FP) on admission to the ICU (Tridente

et al. 2014; Walden et al. 2014). The data set generated from the study contains genotype data

(Rautanen et al. 2015), gene expression from whole blood leukocytes (Davenport et al. 2016;

Burnham et al. 2017), and protein expression from blood plasma. A GWAS of 28-day survival

in patients with CAP identified no significant genome-wide associations, although 2 loci were

associated with p-values lower than 1 × 10−5 and replicated in other cohorts (Rautanen et al.

2015).

Initial analysis of transcriptomic variation in this cohort identified transcriptomic signatures

called sepsis response signature 1 (SRS1) and sepsis response signature 2 (SRS2) in patients

with CAP (Davenport et al. 2016) and FP (Burnham et al. 2017). Individuals with SRS1 were asso-

ciated with higher early mortality compared to SRS2 (Davenport et al. 2016; Burnham et al. 2017).

Differentially expressed (DE) genes between SRS1 and SRS2 in CAP patients were enriched for

pathways involved in T cell activation, cell death, apoptosis, necrosis, cytotoxicity, and phagocyte

movement. Specifically, key mediators of endotoxin tolerance were present in these DE genes,

with downregulation of human leukocyte antigen (HLA) class II genes and T cell activation genes

in SRS1 samples. These pathways were similarly enriched in DE genes between sepsis response

signature (SRS) groups in FP patients. The predominant source of variation in the transcriptome

is associated with SRS assignment, with few differences arising due to source of infection. Re-

cently, a quantitative sepsis response signature (SRSq) score was developed to position samples

along a continuum, with higher values indicating a state close to SRS1 and lower values indicat-

ing a state close to healthy control patients (Cano-Gamez et al. 2022). Other efforts to perform

transcriptomic stratification of patients in sepsis cohorts (Scicluna et al. 2017; Sweeney et al.

2018; Baghela et al. 2022) have similarly identified specific signatures associated with poorer

outcomes. Patient stratification can also identify subsets of patients that may benefit from spe-

cific therapies (Marshall 2014). For instance, the use of hydrocortisone as an acute treatment

in sepsis was associated with increased mortality in patients with an SRS2 phenotype (Antcliffe
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et al. 2019). Taken together, these results demonstrate the clinical significance of transcriptomic

heterogeneity in sepsis and the need for stratification to identify more precise point-of-care ther-

apeutic strategies.

1.5.3 Summary of cis-eQTL and pQTL

The GAinS cohort now consists of 2,056 participants, with RNA-seq available for 667 patients

and plasma protein data available for 1,182 patients. Variation in molecular expression is asso-

ciated with genotypic variation between individuals. The promise of molecular heterogeneity for

patient stratification and the potential to identify context-specific regulatory elements has moti-

vated the identification of eQTL in whole blood leukocytes1 and pQTL in plasma2 in GAinS (Figure

1.5). Based on the RNA-seq data, 20,272 genes were considered to be expressed in the cohort

of patients. For any given expressed gene, common SNPs in a 1 megabase (Mb) window around

the TSS were tested as potential cis-eQTL. Of the expressed genes, 10,618 (52.4%) genes had

cis-eQTL identified in this analysis. A conditional cis-eQTL analysis of the genes with expression

quantitative trait loci (eGenes) identified evidence for multiple signals for 3,788 (35.7%) eGenes,

resulting in 16,049 total eGene-signal pairs. The proteomics analysis of plasma, in contrast, de-

tected 269 proteins. Since a trans analysis was powered with this number of proteins and restrict-

ing to cis windows would have removed many potentially interesting variants from the analysis,

a genome-wide scan of protein expression was conducted and identified 29 (10.8%) genes with

protein quantitative trait loci (pGenes). Of these, 23 (8.6%) pGenes had pQTL in cis and 6 (2.2%)

pGenes had pQTL in trans, with no pGenes with both cis- and trans-pQTL.
1Described in Section A.6
2Described in Section A.7
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Figure 1.5: Mapping of cis-eQTL and pQTL. Expressed genes in whole blood leukocytes and detected proteins in
plasma were tested for cis-eQTL and pQTL respectively. eGenes and pGenes were identified in each case. An initial
10,618 eGenes were identified, with 3,788 showing evidence of more than one signal based on a forward regression
approach. The 29 pGenes were divided into 23 with only cis-pQTL and 6 with only trans-pQTL. There were no pGenes
with both cis- and trans-pQTL.

In this thesis, I will explore the biological mechanisms that connect variation in genotype with

molecular variation of clinical and therapeutic relevance in sepsis.

1.6 Specific Aims

§ Chapter 3: Characterise broad transcriptomic signatures in sepsis

The investigation of transcriptomic response to infection in GAinS has focused on the primary

axis of variation in gene expression via SRS and SRSq. The molecular biology and heritability of

SRS and its association with outcome remain to be explored. I aim to:

1. Decompose transcriptomic variation into co-expression modules of pathological interest

2. Identify the genetic basis of variation in modules

3. Determine the relevance of modules to outcome

32



CHAPTER 1. INTRODUCTION

§ Chapter 4: Investigate patterns of association with molecular expression

The eQTL and pQTL in GAinS provide initial evidence for the association between genotype and

molecular traits. The flow of information between mRNA and proteins provides an opportunity

to better understand how variation in gene expression in whole blood leukocytes is coupled with

variation in protein abundance in plasma. Patterns of association can also be leveraged to con-

nect molecular QTL with disease-associated variants. I aim to:

1. Colocalise eQTL and pQTL

2. Colocalise molecular QTL with disease-associated variants

3. Reduce uncertainty around causal variants due to LD using fine mapping

§ Chapter 5: Identify dysregulated cell types in sepsis

Molecular QTL in GAinS are not specific to one cell type or tissue. Whole blood leukocytes are

a heterogeneous mixture of primary immune cells and proteins in plasma are produced and de-

graded by various tissues. Molecular QTL may be specific to certain cell types or may represent

broad patterns of regulation across cell types. I aim to:

1. Characterise the accessibility landscape of stimulated immune cells

2. Identify cell types that manifest the effects of QTL

3. Predict the molecular effects of QTL
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2.1 Description of Cohort

The patients in this study consisted of adults recruited to the GAinS study from 34 ICUs in the

United Kingdom. The patients were adults (aged greater than 18 years) diagnosed with either

CAP or FP. Admission criteria for the study have been described previously (Walden et al. 2014;

Tridente et al. 2014). For inclusion, CAP was defined as febrile illness associated with cough, spu-

tum production, breathlessness, leukocytosis, and radiological features of pneumonia acquired

in the community or within less than two days of hospital admission (Walden et al. 2014). Simi-

larly, FP was defined as inflammation of the serosal membrane that lines the abdominal cavity,

secondary to contamination by faeces, as diagnosed by laparotomy (Tridente et al. 2014).

Sample collection is described in prior studies (Davenport et al. 2016; Burnham et al. 2017).

Briefly, whole blood samples from patients were collected approximately one, three, and/or five

days after admission to the ICU. Most patients do not have samples from all three time points.

Genotyping using SNP microarrays1 and imputation2 was performed previously. RNA-seq was

performed on 864 samples from 667 patients3. Before RNA-seq was performed, gene expression

in the initial subset of recruited patients was assayed using microarrays4. Mass spectrometry

was used to quantify protein abundance in plasma for 1,680 samples from 1,068 patients5.
1Described in Section A.1
2Described in Section A.2
3Described in Section A.3
4Described in Section A.4
5Described in Section A.5
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2.2 Analysis of Gene Expression

2.2.1 Weighted Network Correlation Analysis

A recent simulation study showed that systematic variation in the transcriptome cannot be at-

tributed to co-expression modules in a network when assuming a scale-free topology (Parsana

et al. 2019). To control for this technical variation, the top 20 gene expression PCs were regressed

out from the log-transformed counts per million (logCPM) gene expression matrix. The biweight

midcorrelation matrix was then calculated for the residual gene expression to generate a similar-

ity matrix using the bicor function from the WGCNA R package (Langfelder et al. 2008). For any

given gene, the gene expression value of all samples from the same individual was replaced with

the mean gene expression (Bland et al. 1995) to only measure between-individual correlation.

Spatial quantile normalisation implemented in the spqn R package (Wang et al. 2022b) was used

to account for the mean-correlation bias in the similarity matrix. The normalize_correlation

function was used on the similarity matrix with 21 blocks of size 1000 and block 18 as the refer-

ence group.

Co-expression modules were identified in the gene expression data using the WGCNA R pack-

age (Langfelder et al. 2008). The pickSoftThreshold function determined a soft threshold value

of 4 for the similarity matrix. This soft threshold was used to build an unsigned adjacency ma-

trix using the adjacency function, which was used to calculate the topological overlap metric

(TOM) matrix using the TOMsimilarity function. The dynamic tree cut algorithm included in the

WGCNA package as the cutreeDynamic function was used to generate modules with default pa-

rameters and a minimum cluster size of 10. Similar modules were merged based on the similarity

of their module eigengenes using the mergeCloseModules function with a cut height of 0.1. For

a module, the eigengene was defined as the first PC of the gene expression data of the genes

present in the module. The module eigengenes for the final set of modules were calculated using

the moduleEigengenes function.

2.2.2 Module Annotation

The clusterProfiler R package was used to annotate modules with GO terms (Biological Pro-

cesses, Cellular Components, and Molecular Functions) and KEGG pathways using the enrichGO

and enrichKEGG functions respectively (Wu et al. 2021). The ReactomePA R package was used to

annotate modules with Reactome pathways using the enrichPathway function (Yu et al. 2016).

In each case, p-values were adjusted using Benjamini-Hochberg FDR correction. A p-value thresh-
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old of 0.01 and a q-value threshold of 0.05 were used. The set of expressed genes was used as

the background for enrichment.

Cell type signatures from the xCell R package (Aran et al. 2017) and marker genes for cell types

detected in sepsis (Kwok et al. 2022) were used to identify cell-type-specific modules. The xCell

signatures were derived based on differential gene expression from large transcriptomic studies

of individual cell types and built to minimise classification error. Enrichment of gene signatures

was performed using a hypergeometric test using the phyper function in R. The entire set of

expressed genes was considered the background for enrichment. P-values were corrected using

the Benjamini-Hochberg FDR procedure. Since multiple transcriptomic studies assayed the same

cell types in xCell, one cell type often had multiple signatures. The median odds of enrichment

per cell type in xCell were reported for any signatures that passed a q-value cutoff of 0.05. In

contrast, each cell type in the Kwok et al. 2022 study had one set of markers. Signatures for cell

types passing a q-value cutoff of 0.05 were reported. Enrichment was calculated as the ratio

between the proportion of signature genes in the module and the proportion of signature genes

in the entire set of expressed genes.

2.2.3 Module Association with Clinical Endophenotypes

For each endophenotype, FDR was controlled using the Benjamini-Hochberg procedure. Associ-

ations were considered to be significant if the adjusted p-value was less than 1 × 10−3. Due to

the large panel of cell frequencies, a lower adjusted p-value threshold of 1× 10−4 was used.

Inverse normal transformed cell proportions for three broad leukocyte lineages (neutrophils,

lymphocytes, and monocytes) were available for the majority of samples. To expand on these

broad lineages, CIBERSORTx was used to estimate cell type frequencies from the bulk RNA-seq

samples (Newman et al. 2019). Single-cell RNA sequencing (scRNA-seq) samples from the on-

going Sepsis Immunomics study were used as the panel for CIBERSORTx. An initial description

of the scRNA-seq data is presented by Kwok et al. 2022. Spearman’s Rho was used to mea-

sure association between eigengenes and quantitative endophenotypes (SRSq, cell proportions,

cell frequencies, and xCell scores) and a two-sided significance test was performed using the

cor.test function in R.

To identify eigengenes that were associated with changes over time or with diagnosis (CAP

or FP), a repeated measures analysis of variance (ANOVA) was performed using the anova_test

function implemented in the rstatix R package. The reported effect size was generalised eta

squared (GES).
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The 28-day survival of patients was measured in the GAinS cohort. Association between this

patient outcome and each eigengene was tested using a Cox proportional hazards model as

implemented in the survival R package using the coxph function. For each patient, the value of

the eigengene at the last time point recorded was used as a predictor for the survival function.

2.3 Molecular QTL

A single-variant association analysis developed previously for repeated measurements (Daven-

port et al. 2018) was used to perform QTL mapping. In each QTL analysis, genotypes were filtered

to only include biallelic SNPs on autosomes with a minor allele frequency (MAF) greater than 0.01.

Genotypes were coded as 0, 1, or 2 based on the number of copies of the minor allele carried by

each patient. The lme4 R package (Bates et al. 2015) was used to build the LMM for each variant

using the lmer function. Patients were modelled as a random intercept. In each QTL analysis, a

given variant was modelled as having a fixed effect on the trait. A likelihood ratio test was used

to test the significance of the effect of the variant using the anova function implemented in the

lme4 R package. This approach was previously used to identify cis-eQTL1 and pQTL2.

Let n be the number of samples, p be the number of covariates, and q be the number of

patients. A LMM for a trait Y ∈ Rn×1 is modelled as

(Y | B = b) ∼ N (Xβ + Zb, σ2In)

where X ∈ Rn×p is the design matrix of the fixed effects, β ∈ Rp×1 is the vector of fixed effects,

Z ∈ Rn×q is the design matrix of the random effects, B ∈ Rq×1 is a random vector of patient-

specific intercepts, b is a realisation of B, and σ2 is the residual variance. The random vector B

is further assumed to be normally distributed as

B ∼ N (0, σ2
RIq)

implying that the patient-specific random effects are independent. Restated for the i-th observa-

tion associated with the j-th patient, Yi is modelled as

Yi = β0 + βggj +

p∑
k=2

βkXik + bj

where β0 is the intercept, βg is the effect of an additional minor allele on the trait, g is the first
1Described in Section A.6
2Described in Section A.7
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column vector of X and gj is the genotype of the patient, βk is the effect of the k-th covariate, and

bj is the patient-specific random effect.

2.3.1 Mapping ofModule QTL

A set of 70,300 SNPs consisting of lead cis-eQTL, lead conditional cis-eQTL, and trait-associated

SNPs from the European Bioinformatics Institute (EBI) GWAS Catalog (Buniello et al. 2019) were

tested for associations with all module eigengenes. Similar to the cis-eQTL analysis, seven geno-

typing PCs, 20 PEER factors, SRS status (SRS1 versus non-SRS1), diagnosis (CAP versus FP), and

cell proportions were used as fixed-effect covariates. A genome-wide threshold of 6.71 × 10−9

was used based on a Bonferroni FDR correction of 0.05, accounting for the number of SNPs and

number of modules tested. Loci were defined for each module by constructing 1 Mb windows

around each module QTL and merging intervals until a set of disjoint intervals was generated.

Four PCs in addition to the first module eigengene (together called the top 5 module eigen-

genes) were calculated using singular value decomposition (SVD) on gene expression Z scores

as implemented in the svd R function. The genome-wide threshold was decreased to 1.34×10−9

based on the additional testing burden. Loci were identified using the same recursive merging

strategy of 1 Mb intervals as that used for the top module eigengenes.

2.3.2 Module QTL Replication

The microarray gene expression data was used as a replication cohort for the module QTL. A

module was only considered for replication if 5 or more genes from the original module were

present on the microarray. These microarray modules were then used to calculate microarray

module eigengenes using SVD on gene expression Z scores as implemented in the svd R func-

tion. The 134 overlapping samples between the microarray and RNA-seq data sets were used to

assess the similarity of module eigengenes between the two methods using Spearman’s Rho.

PEER factors for the microarray expression data were calculated using the same approach

as the RNA-seq analysis. The 134 overlapping samples were held out before testing module QTL

for replication. The same LMM was used to test lead module QTL from the RNA-seq analysis on

microarray module eigengenes. Lead module QTL were tested only if they met a MAF cutoff of

0.01 in the entire GAinS cohort. P-values were adjusted using a Benjamini-Hochberg FDR correc-

tion as implemented in the p.adjust R function. The replicated genotypic effect was considered

significant if the adjusted p-value was less than 0.05. Replication of the direction of effect was

confirmed by comparing the direction of the original effect with the direction of the replicated
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effect multiplied by the sign of Spearman’s Rho comparing the module eigengenes between the

microarray and RNA-seq methods.

2.4 Colocalisation

Colocalisation was performed using conditional cis-eQTL, pQTL, module QTL, and trait-associa-

ted SNPs from selected studies (Table B.1) in the EBI GWAS Catalog with matching ancestry.

Compared to overlapping individual SNPs between association studies, statistical colocalisation

is performed across a locus consisting of variants in a genomic interval. The 1 Mb window around

the TSS presented a natural definition for the colocalisation locus for conditional cis-eQTL and

cis-pQTL. For trans-pQTL and module QTL, colocalisation loci were defined by building 1 Mb win-

dows around each QTL and recursively merging genome-wide until a disjoint set of intervals was

generated. For trait-associated SNPs from the EBI GWAS Catalog, a 1 Mb window around the

lead trait-associated SNP was used as the colocalisation locus.

The COLOC R package (Giambartolomei et al. 2014) was used to perform colocalisation be-

tween any two traits. A colocalisation event for two traits was defined to occur whenPP3+PP4 >

0.25 and PP4/(PP3 + PP4) > 0.7. Default priors in COLOC were used.

2.5 FineMapping

Fine mapping was performed on the conditional cis-eQTL, pQTL, and module QTL loci that were

used for colocalisation. In the case of eGenes with multiple conditional cis-eQTL signals, condi-

tional summary statistics were used to perform fine mapping. The SuSiE regression (Wang et

al. 2020) implemented in the susieR R package and FINEMAP (Benner et al. 2016) were used to

identify 95% CSs. For both methods, one causal variant was assumed to underlie the conditional

cis-eQTL. Up to ten causal variants were assumed for the other loci. The LD matrix for each locus

required by susieR and FINEMAP was retrieved from the genotype data of the cohort rather than

an external LD panel. As a naive alternative to CSs, tagging variants in a 1 Mb window around the

lead variant with R2 > 0.8 (tagging SNP sets) were identified using PLINK (Purcell et al. 2007) on

genotype data from the entire GAinS cohort.
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2.6 Publicly Available Data

Paired-end ATAC-seq reads (Accessions: SRP066100, SRP156496, SRP265675) were retrieved

from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA)

(https://www.ncbi.nlm.nih.gov/sra). A total of 219 ATAC-seq samples (Tables C.1 and C.2)

were retrieved using fasterq-dump (https://github.com/ncbi/sra-tools).

2.6.1 ATAC-seq Alignment

Adapter sequences were trimmed using TrimGalore (https://github.com/FelixKrueger/Tr

imGalore) with the --paired option. The reads were then aligned to the Genome Reference Con-

sortium human build 38 (GRCh38) build of the human genome using Bowtie 2 (Langmead et al.

2012) with default parameters and --no-mixed and --no-discordant flags set. Duplicates were

marked using the Picard (https://github.com/broadinstitute/picard) MarkDuplicates

function. Reads that were unpaired, unmapped, duplicates, or mapped to multiple locations were

filtered out. To ensure quality alignments, reads with a mapping quality (MAPQ) score of less than

30 were filtered out. Reads that mapped to the mitochondrial genome or to the blacklisted ge-

nomic regions reported by the Encyclopedia of DNA Elements (ENCODE) (Amemiya et al. 2019)

were also filtered out. Technical replicates from the neutrophil atlas were merged. The alignment

files were filtered, indexed, merged, and sorted using a combination of SAMtools (Danecek et al.

2021) and BEDTools (Quinlan et al. 2010).

2.6.2 ATAC-seq Sample Quality

TSS enrichment scores were used as a proxy for sample quality. TSS enrichment scores measure

the signal-to-noise ratio for each sample based on the expectation that regions near the TSS of

protein-coding genes are more accessible across the entire genome. The score was calculated

by dividing the mean coverage of the 100 base pair regions centred at the TSS by the mean

coverage of the 100 base pair regions that are 1 Mb away from the TSS. TSS regions of protein

coding genes were retrieved from version 99 of the Ensembl human genome reference (Yates

et al. 2020) and coverage was calculated using featureCounts (Liao et al. 2014) with -p and -O.

2.6.3 ATAC-seq Peaks

ATAC-seq peaks were called using MACS2 (Zhang et al. 2008) with --keep-dup all, --nomodel,

--nolambda, and -f BAMPE. Three types of peak sets were defined: group, cell type, and consen-
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sus peak sets. A group was defined as a cell-condition pair, where the condition was stimulation

status (stimulated versus unstimulated) for the immune atlas and stimulation condition (ligand,

E. coli + time point, or S. aureus + concentration) for the neutrophil atlas. For each group, sam-

ple peaks with MACS2-derived q-value less than 1 × 10−4 present in two or more samples were

merged. If the group consisted of only one sample, only the q-value filter was applied. Any peaks

larger than 3 kilobases (kb) were removed.

The group peak sets were used to create the cell type peak sets. For each group peak set,

peaks that intersected with peaks from another group peak set from the same cell type with less

than 90% overlap were filtered out. Group peak sets from the same cell type were then merged.

Any peaks larger than 3 kb were removed.

All group peak sets in an atlas were used to create the consensus peak set. Peaks that inter-

sected with peaks from another group with less than 90% overlap were filtered out before merging

group peak sets. Any peaks larger than 3 kb were removed. Intersection and merging operations

were performed using BEDTools (Quinlan et al. 2010).

2.6.4 Peak Annotation andMotif Enrichment

To characterise ATAC-seq peaks detected in various cell types and under various stimulations,

peak sets were annotated using the annotatePeaks.pl script in HOMER (Heinz et al. 2010). The

script was run with the GRCh38 build of the human genome, genome annotation from version 99

of the Ensembl human genome reference (Yates et al. 2020), and the -organism human option.

Motif enrichment analysis requires an appropriate background set of sequences to contrast

with the query sequences of interest. Since ATAC-seq peaks are enriched near the TSS, back-

ground sequences were selected in a local region around the test peak set. For the cell type

peaks, the flanking regions upstream and downstream of each peak were used as background

sequences. Any flanking region that overlapped with another peak in the test set was removed

from the background sequence set. For the group peaks discovered under stimulation, the back-

ground sequences were defined as any peaks that overlapped more than 90% between the control

and the stimulated group peak sets. The test set was constructed by removing any peaks from

the stimulated group peak set that overlapped with any peak from the control group peak set.

Simple enrichment analysis (SEA) implemented in the MEME suite (Bailey et al. 2015; Bailey et

al. 2021) was used to identify enrichment of known motifs in peaks compared to the defined back-

ground set of sequences. Only motifs with an enrichment q-value less than 0.05 were retained.

The find individual motif occurrences (FIMO) tool in the MEME suite (Grant et al. 2011; Bailey et al.
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2015) was used to identify motif locations in peak sequences. Curated, non-redundant transcrip-

tion factor binding motifs were retrieved from the vertebrate taxonomic group of the JASPAR

2022 CORE database (Sandelin et al. 2004; Castro-Mondragon et al. 2022).

2.7 Functional Interpretation

2.7.1 Enrichment of eQTL in Functional Categories

The SNPsnap web server (Pers et al. 2015) was used to generate 10,000 matched SNPs for each

of the lead conditional cis-eQTL. Matching was performed based on LD from the European su-

perpopulation within Phase 3 of the 1000 Genomes (1000G) Project (The 1000 Genomes Project

Consortium et al. 2015). The recommended default parameters were used, but HLA SNPs were

not excluded. The matched SNPs were used to test for enrichment of the conditional cis-eQTL

in group peaks from the immune and neutrophil atlases, ENCODE candidate cis-regulatory ele-

ments (cCREs) (Moore et al. 2020), and ChromHMM (Ernst et al. 2012) states from the 18-state

model for selected Roadmap Epigenomics Project (Kundaje et al. 2015) epigenomes (Table E.1).

For each genome annotation, the measured statistic was the proportion of SNPs that overlapped

an annotated region. The null distribution was estimated using the 10,000 samples of matched

SNPs. A two-sided test was conducted using the null distribution with a significance threshold

of α = 0.0001.

The permutation-based analysis of GoShifter (Trynka et al. 2015) was used to test for en-

richment of conditional cis-eQTL in group peak sets. The reimplementation can be found at

https://github.com/NMilind/LeanGoShifter. Lead conditional cis-eQTL and any tagging

SNPs within a 1 Mb window with R2 > 0.8 were included for each eGene.

CHEERS is a method that is specifically developed to identify enrichment in peak count data

from different stimulations of a cell type (Soskic et al. 2019). Enrichment of lead conditional

cis-eQTL in specific neutrophil states was tested using CHEERS. A significance threshold of α =

0.001 was used. Since cis-eQTL were identified in 1 Mb windows around TSSs, peaks were subset

to only include those that fell in a 1 Mb window around any TSS. To reduce confounding caused

by difference in peak sizes, a region the width of the median peak width centred at each peak was

used to test for SNP overlap instead of the entire peak. The reimplementation can be found at

https://github.com/TrynkaLab/CHEERS/tree/python3.
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2.7.2 Partitioned Heritability

Consider a dichotomous genomic annotation that splits the complete set of m biallelic variants

into two mutually exclusive sets, where α variants fall within the annotation and ᾱ variants are

not in the annotation. A LMM can be used to build a variance components model that jointly

estimates the SNP heritability of a trait that is attributable to the annotation1 (Yang et al. 2010;

Gusev et al. 2014).

Let n be the number of samples, p be the number of covariates, and q be the number of

patients. A LMM for a trait Y ∈ Rn×1 is modelled as

(Y | B = b,Bα = bα,Bᾱ = bᾱ) ∼ N (Xβ + Z(b+ bα + bᾱ), σ
2In)

where X ∈ Rn×p is the design matrix of the fixed effects, β ∈ Rp×1 is the vector of fixed effects,

Z ∈ Rn×q is the design matrix of the random effects, B ∈ Rq×1 is a random vector of independent

patient-specific intercepts, Bα ∈ Rq×1 is a random vector of patient-specific intercepts with a co-

variance structure based on kinship estimated from SNPs within the annotation, and Bᾱ ∈ Rq×1

is a random vector of patient-specific intercepts with a covariance structure based on kinship

estimated from SNPs outside the annotation. The vectors b, bα, and bᾱ are realisations of these

random variables. The random vectors are normally distributed as

B ∼ N (0, σ2
RIq)

Bα ∼ N (0, σ2
αΨα)

Bᾱ ∼ N (0, σ2
ᾱΨᾱ)

where Ψα and Ψᾱ are genetic relationship matrices (GRMs) derived from the variants within and

outside the annotation respectively. The per-SNP heritability of the trait h2SNP and the annotations

h2SNPα is

h2SNP =
1

m

[
σ2
α + σ2

ᾱ

σ2
R + σ2

α + σ2
ᾱ + σ2

]
h2SNPα =

1

α

[
σ2
α

σ2
R + σ2

α + σ2
ᾱ + σ2

]

The enrichment of per-SNP heritability in the annotation is

h2SNPα

h2SNP

=
m

α

[
σ2
α

σ2
α + σ2

ᾱ

]
1Discussed in Section F
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A variance components model was built using the relmatLmer function in the lme4qtl R

package (Ziyatdinov et al. 2018) to estimate the heritability of module eigengenes partitioned

by various functional annotations. Estimation was performed using restricted maximum likeli-

hood (REML). For each annotation, biallelic variants were partitioned into mutually exclusive sets

based on the annotation, which were used to estimate two separate GRMs using GCTA (Yang

et al. 2010). Seven genotyping PCs, 20 PEER factors, SRS status (SRS1 versus non-SRS1), diag-

nosis (CAP versus FP), and cell proportions were used as fixed-effect covariates.

2.7.3 Variant Effect Prediction

The Ensembl Variant Effect Predictor (VEP) version 104 (McLaren et al. 2016) was used to an-

notate lead variants for conditional cis-eQTL, module QTL, and pQTL loci. The script to run VEP

and its plugins is built and maintained by the Human Genetics Informatics (HGI) team at the

Wellcome Sanger Institute.

2.8 Statistical Analysis

All statistical analyses were conducted in an Ubuntu environment. The code used for analysis

can be found at https://github.com/davenportlab/eQTL_pQTL_Characterization. The

complete list of software used is provided in the repository.
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3 | Gene Co-Expression

The aim in this chapter is to decompose gene expression data from the GAinS study into co-

expression modules. I will use these co-expression modules to better understand the relationship

between genetic variation, transcriptomic variation, and outcome.

3.1 Co-ExpressionModules

The gene expression data consists of RNA-seq of 864 whole blood leukocyte samples from 667

adult patients1. Samples were collected one, three, and/or five days after admission to the ICU

whenever possible. 637 individuals with gene expression data were also present in the genotype

data2.

Co-expression modules are gene sets that show evidence of similar expression patterns with-

in the tissue of interest. Correlation between gene expression profiles may be driven by upstream

transcription factors, heterogeneity in cell proportions between individuals, or mechanistic inter-

play between gene products. Weighted correlation network analysis is a method to cluster the

transcriptome into mutually exclusive modules of genes that are co-expressed. WGCNA was

used to decompose the GAinS transcriptome into gene modules3. 106 modules were identified

from the 20,272 expressed genes in the GAinS cohort. These modules ranged from 11 to 1,785

genes in size (Figure 3.1). Modules were labelled in decreasing order based on their size. Six

genes were not assigned to any modules.
1Described in Sections 2.1 and A.3
2Described in Section A.1
3Described in Section 2.2.1
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Figure 3.1: Distribution of module sizes. This figure depicts the distribution of module sizes for the 106 modules
generated using WGCNA. The distribution had a long tail of smaller modules.

3.1.1 Signatures of Leukocytes

Enrichment for known pathways and cell-type-specific genes was used to characterise the bio-

logical pathways that were captured by the modules1. The modules demonstrated enrichment

for xCell transcriptomic signatures derived from whole blood (Figure 3.2) and markers of cell

types in blood derived from a sepsis cohort (Figure 3.3).
1Described in Section 2.2.2
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Figure 3.2: Cell-type-specific enrichment of modules. Modules were tested for enrichment of xCell gene signatures
derived from large whole blood transcriptomic studies. Modules shown were enriched for one or a few signatures in
related cell types, demonstrating cell-type specificity.
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Figure 3.3: Cell marker enrichment of modules. Modules were tested for enrichment of leukocyte marker genes in
sepsis identified by Kwok et al. 2022. Modules demonstrated cell-type specificity for markers for cell types detected
in a sepsis context. This was especially apparent for various populations of neutrophils identified by Kwok et al. 2022.

A number of modules captured gene programs of particular relevance to the innate immune

response, a process that induces excessive inflammation in sepsis. Neutrophils play a particu-

larly important role in sepsis. Kwok et al. 2022 derived a trajectory for neutrophil subsets in sepsis

from immature to mature (Figure 3.4).

MPO+

PADI4+ Cycling

IL1R2+

S100A8/A9 High Mature

Figure 3.4: Neutrophil subsets. The differentiation pathway of neutrophil subsets identified by Kwok et al. 2022. Neu-
trophils move from MPO+ immature neutrophils and cycling neutrophils towards mature neutrophils and S100A8/9
high neutrophils.

MPO+ immature neutrophils differentiate into PADI4+ immature neutrophils before eventually

forming the large pool of IL1R2+ immature neutrophils observed in sepsis. Modules uniquely en-
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riched for the MPO+ and PADI4+ gene markers are different from those enriched for the IL1R2+

immature neutrophils (Figure 3.3). This included module 37, which contains genes essential to

neutrophil effector function (Table 3.1) and is enriched for neutrophil activation (GO:0042119)

and Antimicrobial Peptides (R-HSA-6803157). These neutrophil subsets were also associated

with module 65, which contains genes for multiple antimicrobial molecules (Table 3.1) and is en-

riched for neutrophil degranulation (GO:0043312) and Antimicrobial peptides (R-HSA-6803157).

The other subset of immature neutrophils were the cycling neutrophils, which are neutrophils

that are actively going through the cell cycle. Module 6 was enriched for the neutrophil xCell

signature (Figure 3.2) and marker genes for degranulating neutrophils and cycling neutrophil

progenitors (Figure 3.3). Consistent with this, module 6 was enriched for chromosome segre-

gation (GO:0007059), cell cycle DNA replication (GO:0044786), and Cell Cycle Checkpoints (R-

HSA-69620). Expansion of the IL1R2+ immature neutrophil subset is specifically associated with

sepsis. Module 2 was enriched for markers of IL1R2+ immature neutrophils. S100A8/9 high neu-

trophils were one of the two terminal neutrophil subsets. S100A8/9 is released during infection

by neutrophils and activates toll-like receptor (TLR) and RAGE signalling (Pruenster et al. 2016).

Modules 21, 30, and 39 were enriched for S100A8/9 high neutrophil gene markers. Module 39

is also enriched for markers of mature neutrophils, which are a terminal population independent

of the S100A8/A9 high neutrophils. Modules 56 and 92, enriched for mature neutrophil markers,

contain NFκB pathway members and major histocompatibility complex (MHC) class I genes and

associated regulators respectively (Table 3.1).

In addition to neutrophils, monocytes are known to be dysregulated during sepsis, espe-

cially through the process of endotoxin tolerance. Module 15 is specifically enriched for macro-

phage signatures and markers (Figures 3.2 and 3.3). It contains components associated with

macrophage activation and chemotaxis (Table 3.1). HIF1A and associated genes in the hypoxia-

induced glycolysis pathway that are implicated in endotoxin tolerance were captured separately

in Module 51 (Table 3.1). Is is also enriched for the KEGG HIF-1 signalling pathway (hsa04066).

Platelet activation and coagulation, which are activated alongside the cellular component of

the humoral response, are dysregulated in sepsis. Module 31 was enriched for platelet and

megakaryocyte signatures (Figure 3.2) as well as platelet and granulocyte gene markers (Figure

3.3). It contained receptors present on platelets that activate platelet aggregation (Table 3.1).
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Table 3.1: Key genes in modules. Pathway and gene set enrichment analyses identified key genes in multiple mod-
ules. Some of these key genes and their relevance are listed in the table below.

Group Module Genes Function

Innate

Immune

Response

Module 2 MMP9, ADAM19, SELL Transendothelial migration

TRAF3IP3 Toll-like receptor signaling

Module 6 CXCR1, CXCR2 Neutrophil chemoattraction

MMP25 Transendothelial migration

Module 8 CCR3, CLC, HRH4 Eosinophil markers

IL15RA, CEBPE, ADORA3 Granulocyte function

ALOX15 Immunomodulation

Module 15 MARCO, FGR, TREM2,

CSF1R, MSR1, CMKLR1

Macrophage activation

CCR2 Macrophage chemotaxis

SFTPD, RNASE2, RNASE3 Antimicrobial molecules

C1QA, C1QB, C1QC, CLU, CFP,

C3

Complement system components

Module 31 GP1BA Interaction with von Willebrand

factor

GP6, CLEC1B, PEAR1,

MPIG6B

Platelet receptors for platelet

aggregation

SERPINE1 Platelet granule content

Module 37 ELANE, SERPINB1 Neutrophil elastase activity

DEFA4, AZU, MPO, PRTN3,

CTSG

Neutrophil granule components

Module 65 CAMP, BPI, LTF, HP Antimicrobial molecules

CEACAM8, TCN1, LCN2 Granulocyte marker

Antiviral

Response

Module 23 PSMA2, PSMA3, PSMA5,

PSMB4, PSMB8, PSMB9,

PSMB10, PSME1, PSME2

Proteasome components

ERAP2, TAP1, TAP2 Antigen processing

TAPBPL Antigen presentation

Module 39 MX1, MX2 Antiviral activity

IFIT1, IFIT2, IFIT3, IFIT5 Viral RNA inhibition

OASL, OAS1, OAS2, OAS3 dsRNA-induced antiviral response

IRF7, RSAD2, IFI6 Other interferon-induced antiviral

activity

Module 81 HLA-A, HLA-F, HLA-G MHC class I genes

Continued on next page
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Group Module Genes Function

Module 92 HLA-B, HLA-C, HLA-E, B2M MHC class I genes

NLRC5 Regulator of MHC class I expression

BTN2A1, BTN2A2, BTN2A3P,

BTN3A1, BTN3A3, BTN3A2

Suppression of T cell interaction

with APCs

Adaptive

Immune

Response

Module 10 CD19, CD80 B cell markers

PAX5, IKZF3, CCR6 B cell maturation

BLK, MS4A1, CD79A, CD79B B cell activation

CD180, TNFRSF13B NFκB activation

CXCR5 B cell chemotaxis

CIITA, HLA-DOA, HLA-DPB1 Professional antigen presentation

Module 20 NCR3, SH2D1B, CTSW,

CD160

Activation of cytotoxic cells

GZMA, GZMM, GNLY, FASLG,

PRF1

Cytotoxic response

KLRC1, KIR2DL4 NK cell markers

Module 48 CRTAM, ITK, CXCR6, PDCD1,

SIT1, UBASH3A, CTLA4

General T cell function

SH2D1A, SLAMF1, LY9 SLAM transduction pathway

CD3D, CD3E, CD3G, CD4,

CD5, CD6, CD28, CD40LG,

CD96

T cell surface antigens

Module 73 IGHA1, IGHA2, IGKC Immunoglobulin components

JCHAIN, MZB1 Immunoglobulin function

TNFRSF17 NFκB and JNK activation in B cells

Sepsis

Immune

Response

Module 47 ZNF268, ZNF227, ZNF606,

ZNF226, ZNF585A, ZNF71,

ZNF544, ZNF814, ZNF717,

ZNF585B, ZNF345

Transcriptional activators and

repressors

Module 51 HIF1A Master regulator of HIF-1 signalling

pathway

PDK1, ALDOA, ENO1, GAPDH,

PGK1

Enzymes in anaerobic respiration

Module 56 TLR2, NFKBIA, DDIT4 Mature neutrophil markers

Module 63 MPL Platelet production

PRSS57 Neutrophil granule component

CD34, CYTL1, PROM1 HSPC signature

Continued on next page
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Group Module Genes Function

RBPMS, ZNF521 TGF-β/SMAD signaling

Module 71 ZNF737, ZNF273, ZNF595,

ZNF675, ZNF680, ZNF506,

ZNF107, ZNF253, ZNF14,

ZNF90, ZNF91, ZNF93,

ZNF486, ZNF682

Transcriptional activators and

repressors

Module 84 C4A, C4B Complement factors

SMAD7, MICA Immune Signalling

Module 85 HADHA, ACADVL, ACAA2,

ETFDH

Fatty acid β-oxidation

Module 99 RNASET2, SLC15A4 ssRNA detection

Module 103 LYZ Antimicrobial agent

Module 106 YEATS4 Transcriptional activation via

acetylation

IFITM1, IFITM2, IFITM3 Interferon-based response to

pathogens

Adaptive immunity is expected to activate over the course of sepsis due to the prolonged

nature of the immune response. Module 48 captured broad T cell signatures (Figure 3.2) and

contained genes related to many T cell subsets (Table 3.1). Genes for cytotoxicity activation and

response in both NK cells and CD8+ T cells were captured in module 20 (Table 3.1). Modules 10

and 73 contained genes for various different functions of B cells (Table 3.1).

Compared to the larger modules, the smaller modules identified specific pathways of patho-

logical interest to sepsis. This included specific immune functions such as single stranded RNA

detection, antimicrobial agents, and transcriptional activators and repressors (Table 3.1). Mod-

ule 106, for instance, contained three of the four members of the interferon-induced transmem-

brane protein (IFITM) family (Diamond et al. 2013), which restrict cellular entry of a diverse set of

pathogens (Table 3.1).
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3.1.2 Association with Endophenotypes
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Figure 3.5: Associations between module eigengenes and clinical endophenotypes. Module eigengenes were
tested for association with measured cell proportions (neutrophils, lymphocytes, and monocytes) and SRSq using
Spearman’s Rho. Association with diagnosis and time point was tested using repeated measures ANOVA. Finally,
association with 28-day outcome was tested using a Cox proportional hazards model. Only associations passing the
p-value threshold are displayed in this heatmap.

The module eigengene is the first principal component of the gene expression data associated

with genes within the module. Since modules might resolve molecular programs underlying SRS

and heterogeneity in other clinical parameters, module eigengenes were tested for association

with clinical endophenotypes1. An association between the eigengene and an endophenotype

suggests that variation in the gene network captured by the module is associated with observed
1Described in Section 2.2.3
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phenotypic variation. The endophenotypes included the SRSq for each sample, the time point of

sample collection, the diagnosis of the patient (CAP versus FP), the cell proportions for each sam-

ple, the patient outcome, and estimated cell frequencies from a reference scRNA-seq data set.

101 (95.3%) of the modules were associated with at least one clinical endophenotype (Figure 3.5)

based on the module eigengene. Only 6 modules were associated with time point, and a different

set of 6 modules were associated with outcome. These modules might represent pathways in

whole blood that can act as potential biomarkers for disease progression or severity.

Several modules strongly associated with diagnosis (Figure 3.5) contained genes relevant to

antiviral response. Module 23 was enriched for the antigen processing and presentation of pep-

tide antigen via MHC class I (GO:0002474) term and contained genes of the proteasome complex

that processes antigens for presentation via MHC class I molecules (Table 3.1) . Module 39 en-

coded immune responses induced by interferon specific to viral infections (Table 3.1). Module 39

was associated with type I interferon signalling pathway (GO:0060337) and Antiviral mechanism

by IFN-stimulated genes (R-HSA-1169410). Modules 81 and 92, taken together, contained all the

classical and non-classical MHC class I genes. Module 92 also contains B2M, which is another

component of the MHC (Table 3.1).

Many of the modules were associated with either neutrophil, lymphocyte, or monocyte pro-

portions. Since these proportions are necessarily anticorrelated, it was unclear which particular

cell type drove the association with any given module. To address this challenge and to increase

the panel of tested primary immune cell types, cell frequencies derived from CIBERSORTx were

used as proxies (Figure 3.6). These scores are on an absolute scale and demonstrated that dif-

ferent modules were associated with variation in the frequency of different cell types.
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Figure 3.6: Association of module eigengenes and inferred cell frequencies. Cell frequencies inferred using CIBER-
SORTx were used as proxies for cell type proportion measurements in whole blood. Spearman’s Rho was used to test
for association. Only associations passing the p-value threshold are displayed in this heatmap.
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3.1.3 Module Networks

Modules can be represented as networks to better understand the relationships between com-

ponent genes. Module 51 is of particular interest because it contains members of the HIF-1 sig-

nalling pathway and is associated with endotoxin tolerance in monocytes. Selecting the genes

associated with glycolysis and NFκB regulation present in this module (Figure 3.7) reveals that

the glycolysis enzymes are positively correlated with each other and with HIF1A expression. The

expression patterns between HIF1A and genes associated with NFκB signalling are less clear.

The direction of association with COMMD8, FPR1, and SMAD6 suggests a decrease in IκB and

consequent increase in NFκB signalling (Migeotte et al. 2006; Starokadomskyy et al. 2013; Choi

et al. 2006). In contrast, HIF1A is negatively correlated with MIF, which is a pro-inflammatory cy-

tokine released into the bloodstream by leukocytes during infection and stress that is particularly

responsible for reducing the immunosuppressive effects of glucocorticoids and increasing pro-

inflammatory gene expression via NFκB by inhibiting the induction of IκB (Calandra et al. 2003).

ALDOA

HIF1A

ALDOC

PGAM1

SMAD6MIF-AS1

FPR1

MIF

GAPDH

COMMD8ENO1

HIF1A-AS3

PGK1

PKM

PFKL

PDK1

Figure 3.7: Module 51 HIF-1 pathway. This figure is a network diagram of selected genes from module 51. Edge
colour represents correlation between gene expression profiles (blue being negative and red being positive). Edge
size represents the edge weight in the adjacency matrix. Module 51 contains HIF1A. The hub gene in this module was
HIF1A-AS3, an antisense RNA for HIF1A. The pathway contains HIF1A and downstream enzymes that are upregulated
during glycolysis (Left). The module also contained markers of inflammation such as MIF that were negatively corre-
lated with HIF1A expression.

Module 92, which was associated with diagnosis, contains both MHC class I molecules (HLA-
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B, HLA-C, HLA-E, and B2M) and butyrophilin family proteins (Figure 3.8). The genes in these re-

lated families are strongly correlated with each other. Interestingly, the module contains NLRC5,

which simultaneously inhibits NFκB activation (Cui et al. 2010) and activates MHC class I genes

(Meissner et al. 2010). The butyrophilin genes are also present in the MHC class I region but are

negatively correlated with NLRC5. Butyrophilins are expressed on many immune cell types and

can act as either activators or inhibitors of T cells (Arnett et al. 2014).

BTN3A3

BTN3A1

AC023825.1

HLA-B

HCG11

HCP5
HLA-E

HLA-C

BTN3A2

B2M

NLRC5

BTN2A3PBTN2A2

BTN2A1

Figure 3.8: Module 92. This figure is a network diagram of selected genes from module 92. Edge colour represents
correlation between gene expression profiles (blue being negative and red being positive). Edge size represents the
edge weight in the adjacency matrix. Module 92 contains MHC class I members of the HLA complex (Right). It also
contains members of the butyrophilin family that suppress interaction of T cells and APCs (Left). HCP5 was the hub
gene in this module.

3.2 Module QTL

Although a trans-eQTL analysis is an attractive approach to identify trans regulators of disease-

associated molecular heterogeneity in sepsis, such a genome-wide analysis is underpowered in

the GAinS cohort. As a proxy, the module eigengenes were mapped to identify drivers of broad

transcriptomic programs that were called module QTL1. The specific hypothesis that a single SNP

is associated with the expression of multiple distal genes via regulation of a shared upstream

transcription factor in cis was tested by using a set of SNPs consisting of lead cis-eQTL, lead

conditional cis-eQTL, and trait-associated SNPs from the EBI GWAS Catalog. The cis-eQTL were

previously identified in the GAinS cohort2.
1Described in Section 2.3.1
2Described in Section 1.5.3
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Using the module eigengenes as the phenotype identified associations for 31 modules. This

included 876 module QTL across 31 loci (Figure 3.9). Loci were defined as approximately 2 Mb

disjoint intervals over the genome containing module QTL1. There was one locus on chromosome

3 associated with two modules, resulting in 32 module-locus pairs.

Figure 3.9: Module QTL from module eigengenes. Association with module eigengenes was tested genome-wide
using lead cis-eQTL, lead conditional cis-eQTL, and trait-associated variants from the EBI GWAS Catalog. The analysis
identified 31 module QTL loci (inner track), which consist of more than one module QTL in the same region. The
outer track is the genome-wide Manhattan plot for each chromosome. Links originating from each module QTL locus
represent genes in the module associated with the locus that are not on the same chromosome.

The input set of 70,300 SNPs contained 9,941 (14.1%) lead cis-eQTL, 14,937 (21.2%) lead con-

ditional cis-eQTL, and 55,550 (79.0%) trait-associated variants. Of all the module QTL identified,

139 (15.9%) were previously-identified lead cis-eQTL, 236 (26.9%) were previously-identified lead
1Described in Section 2.3.1
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conditional cis-eQTL, and 657 (75.0%) were SNPs from the EBI GWAS Catalog (Figure 3.10). Of

the 31 modules with module QTL, 28 modules were associated with a cis-eQTL and also con-

tained the corresponding eGene.

Lead cis-eQTL

EBI GWAS
Catalog

Lead conditional
cis-eQTL

99 3

16

19

102 619

18

Figure 3.10: Composition of module QTL. Module QTL were identified from a test set of SNPs consisting of lead cis-
eQTL, lead conditional cis-eQTL, and trait-associated variants from the EBI GWAS Catalog. Thus, module QTL have
been previously associated with gene expression and/or a trait.

3.2.1 MultipleModule Eigengenes

Some have argued that the power to detect module QTL can be increased by testing against

multiple gene expression PCs from each module (Wang et al. 2022b). To test this, 4 additional

PCs were calculated for each module to create a set of 5 module eigengenes per module. Using

the top 5 module eigengenes identified associations with a total of 48 modules. This analysis

identified 1,935 module QTL across 76 loci (Figure 3.11). Due to the decreased p-value threshold,

associations for 13 module QTL from the initial analysis were lost, including all module QTL for

module 14. All loci were associated with one module, resulting in 76 module-locus pairs.
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Figure 3.11: Module QTL from top five module eigengenes. To increase power, the top five module eigengenes for
each module were tested genome-wide using lead cis-eQTL, lead conditional cis-eQTL, and trait-associated variants
from the EBI GWAS Catalog. The analysis identified 76 module QTL loci (inner track), which consist of more than one
module QTL in the same region. The outer track is the genome-wide Manhattan plot for each chromosome. Links
originating from each module QTL locus represent genes in the module associated with the locus that are not on the
same chromosome.

Of all the module QTL identified, 292 (15.1%) were previously-identified lead cis-eQTL, 486

(25.1%) were previously-identified lead conditional cis-eQTL, and 1,479 (76.4%) were SNPs from

the EBI GWAS Catalog (Figure 3.12). Of the 48 modules with module QTL, 45 modules were

associated with a cis-eQTL and also contained the corresponding eGene.
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Lead cis-eQTL
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Figure 3.12: Composition of module QTL from the top fivemodule eigengenes. Module QTL derived from the use of
multiple module eigengenes were identified from a test set of SNPs consisting of lead cis-eQTL, lead conditional cis-
eQTL, and trait-associated variants from the EBI GWAS Catalog. Thus, module QTL have been previously associated
with gene expression and/or a trait.

3.2.2 Trait-Associated Variants

Certain traits relevant to sepsis and immune-mediated diseases (IMDs) were curated from the

EBI GWAS Catalog (Tables 3.2 and B.2). Traits of interest were grouped into susceptibility to

infection, serum proteins, leukocyte traits, and autoimmune diseases. 23 (47.9%) of the 48 mod-

ules with module QTL had module QTL that were previously associated with these EBI GWAS

traits. Modules 81 and 92 contained HLA genes. QTL for these modules were previously associ-

ated with susceptibility to various infections (Table 3.2). QTL for module 84, which contained the

genes for complement protein C4, were also associated with susceptibility to infections (Table

3.2). Serum biomarkers and autoimmune diseases have also been previously associated with

module QTL (Table 3.2).
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Table 3.2: IMD-relevant traits in the EBI GWAS Catalog. Some module QTL were SNPs from the EBI GWAS Catalog.
Selected traits relevant to IMDs and their associated modules are listed in this table. Specific studies used are listed
in Table B.2.

Trait Group Trait Modules

Susceptibility to Infection HIV-1 84, 92, 97

Chickenpox 81

Shingles 81, 84

Epstein-Barr Virus 84

Hepatitis B Virus 84

Hepatitis C Virus 84

Mononucleosis 84

Mycobacterium tuberculosis 84

Pneumonia 84

Scarlet Fever 84

Serum Proteins C-reactive Protein (Inflammation Marker) 84, 94, 103

Alanine Aminotransferase (Liver Function) 62, 101, 102

Aspartate Aminotransferase (Liver Function) 63, 69, 81, 101, 102

Albumin 69, 102

Urate 69, 81, 84, 92, 94

Alkaline Phosphatase 69, 106

Creatinine 84, 94

Cystatin C (Kidney Function) 64, 94, 102

IgM 81

IgA 62, 84

IgE 81, 84

Beta-2-microglobulin 84

Complement C4 84

IgG Glycosylation 88

Interleukin 18 89

Interleukin 1β 97

Primary Cell Trait Lymphocyte Count / Proportion 69, 81, 84, 92, 97, 101, 103

Neutrophil Count / Proportion 69, 81, 84, 92, 101, 103

Monocyte Count / Proportion 75, 81, 84, 103, 106

Eosinophil Count / Proportion 59, 69, 81, 84, 94, 99, 101,

106

Basophil Count / Proportion 81, 84

Platelet Count 59, 62, 63, 81, 84, 86, 88, 91,

97, 102, 104

Erythrocyte Count 62, 69, 80, 81, 82, 91, 102

Continued on next page

62



CHAPTER 3. GENE CO-EXPRESSION

Trait Group Trait Modules

Autoimmune Disease Rheumatoid Arthritis 62, 84, 99

Inflammatory Bowel Disease 71, 84, 91, 94, 99

Coeliac Disease 84

Psoriasis 84, 92

Systemic Lupus Erythematosus 81, 84, 92

Multiple Sclerosis 81, 84, 102

Alopecia Areata 84, 101

Vitiligo 81, 84, 99, 101

Type 1 Diabetes 62, 69, 84, 91, 101

Graves Disease 81, 84, 97, 99

Myasthenia Gravis 84

3.2.3 Module QTL Replication
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Figure 3.13: Replication of module eigengenes. Modules were reconstructed in an older microarray data set from
the GAinS cohort with 134 overlapping samples. Similarity between modules from the two data sets was tested using
Spearman’s Rho for the 134 overlapping samples. Module QTL that were replicated in the microarray data set tended
to have better correlated module eigengenes between the two data sets (Wilcoxon Rank Sum Test with Continuity
Correction; p = 0.1118).

The original transcriptomic study in the GAinS cohort contained a subset of patients not included

in the RNA-seq data set. Microarray gene expression data for this subset of patients was used
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as an independent replication cohort for the module QTL1. Only module QTL associated with the

first module eigengene were tested for replication. Since RNA-seq and microarrays are funda-

mentally different technologies and some expressed genes from RNA-seq are not assayed on

the microarray, not all discovered modules could be replicated. Of the 31 lead module QTL, 26

could be tested for replication. Of these, 17 (65.4%) lead module QTL from the original analysis

were significantly associated with the microarray module. A subset of 14 (53.8%) also matched in

the direction of effect. Spearman’s Rho was calculated as a measure of reproducibility between

module eigengenes from the RNA-seq and microarray data based on shared samples. Com-

paring these values between module QTL that were replicated and not replicated (Figure 3.13)

suggested that modules that were more consistent between data sets were more likely to also

have replicable module QTL (Wilcoxon Rank Sum Test with Continuity Correction; p = 0.1118).

−0.050 −0.025 0.000 0.025 0.050

Beta

Dataset RNA−seq Microarray

ME 94 (rs999185)

ME 102 (rs629329)

ME 99 (rs408087)
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Figure 3.14: Forest plot of replicated effects. Of the 26 module QTL that could be tested, 14 replicated based on the
lead module QTL. Effect sizes from the original RNA-seq data set and the replication microarray data set are displayed
as points with 95% confidence intervals. The direction of the effect size from the replication analysis was multiplied
by the sign of Spearman’s Rho measured between the module eigengenes across the two data sets.

Due to regression towards the mean, replication effect sizes were expected to be smaller in

magnitude than the original effect sizes. This pattern was indeed observed for the 14 replicated
1Described in Section 2.3.2
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module QTL (Figure 3.14).

3.3 Discussion

In this chapter, I have identified co-expression modules from the gene expression data for the

GAinS cohort. These modules identified gene networks relevant to the immune dysfunction that

has been previously characterised in sepsis. I used these modules to identify variants associated

with broad expression patterns that I called module QTL. These module QTL have been previously

identified as trait-associated variants or cis-eQTL and are replicable in an earlier sepsis data set.

3.3.1 Co-expressionModules

The analysis identified module 31, which contained gene markers for platelets. The method

used to isolate whole blood leukocytes1 does not isolate platelets. The detection of RNA for

platelet markers and known platelet-associated factors may be due to a high platelet load in sep-

tic patients or extracellular necrotic content that was not entirely filtered out. These markers and

platelet factors may also be expressed in other leukocytes.

Module 51 contained HIF1A and many other factors involved in the hypoxic shift towards gly-

colysis that is characteristic of endotoxin tolerance. In macrophages, endotoxin tolerance is a

brief state of hyporesponsiveness after sustained exposure to lipopolysaccharide (LPS). Sam-

ples in the SRS1 endotype showed enrichment of a gene expression signature associated with

endotoxin tolerance, suggesting that macrophages in these patients may be immunosuppressed

and in a hyporesponsive state (Davenport et al. 2016). The same study also identified HIF1α and

the hypoxia pathway as differentially expressed between transcriptomic endotypes. The shift

to glycolysis (The Warburg effect) and the hypoxic response driven by HIF1α in macrophages

is important for the initial host immune response to infection and promotes pro-inflammatory

gene expression programs (Tannahill et al. 2013). High levels of HIF1α, on the other hand, are

associated with a immunosuppressive phenotype driven by suppression of TLRs via IRAKM and

eventual endotoxin tolerance (Shalova et al. 2015). In addition to HIF1A and members of the gly-

colysis pathway, module 51 also contained multiple regulators of NFκB and IκB, suggesting that

macrophage immunosuppression may be tied to the inhibitory activity of IκB.
1Described in Section A.3
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3.3.2 Relationships betweenModules and Clinical Variables

Prior work in sepsis has indicated that the underlying dysregulated immune response is largely

common between sources of infections (Burnham et al. 2017) and may also be present in non-

infectious sources of trauma (Xiao et al. 2011; Scicluna et al. 2015). However, in addition to this

shared host response, there are source-specific responses that are also present in sepsis. While

78% of DE genes in whole blood leukocytes between sepsis and healthy subjects are common

between pulmonary and abdominal infections, some enriched pathways differ between the two.

Furthermore, mortality can also vary depending on the source of the infection (Peters-Sengers

et al. 2022). Our transcriptomic analysis identified 4 modules that were strongly associated with

source (CAP and FP). These modules encode pathways related to MHC class I antigen presenta-

tion and antiviral responses (Table 3.1). Thus, these modules may represent molecular variation

due to different infecting pathogens between patients with CAP or FP. Although variation in mor-

tality was expected, none of these modules were associated with outcome.

The modules are cell-type-specific, which is especially apparent when using gene markers

from the sepsis scRNA-seq analysis (Kwok et al. 2022). Future work on these modules is to

compare them directly with modules generated from the scRNA-seq data. Deconvolution meth-

ods such as CIBERSORTx are also capable of inferring gene expression profiles for individual cell

types from bulk samples. These can be used to extend the module analysis to specific cell types

in the larger bulk RNA-seq cohort. The scRNA-seq data was initially required to identify which

modules captured variation from specific sepsis neutrophil subsets, since publicly available data

do not capture pathological signatures of neutrophils. Now that these modules have been iden-

tified, they can be used to look for upregulation of particular sepsis neutrophil signatures in other

bulk data sets.

3.3.3 Module QTL

By design, trait-associated variants were included in the module QTL analysis. We identified many

QTL that were previously associated with traits related to IMDs. Although suggestive, a more rig-

orous analysis involves using statistical colocalisation methods to test if the pattern of associa-

tion for these traits is consistent with the associations we identified. This analysis is conducted

in chapter 4 of this thesis. Regardless, this initial analysis reveals that the module QTL have the

potential to reveal interesting biology underlying pathological immune conditions.

The initial hypothesis when performing module QTL mapping was that they would identify

trans factors that are regulated in cis. Thus, module QTL can be considered a form of trans-eQTL.
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There are multiple mechanisms by which a trans-eQTL or module QTL may regulate associated

genes. These include direct regulation via transcription factors (TFs), indirect regulation via TFs,

co-regulation within the gene network, and protein-protein interactions (Võsa et al. 2021). Deter-

mining which mechanisms underlie specific module QTL requires functional interpretation of the

associated variants and the gene network captured by the module. Some of this mechanistic

interpretation is conducted in chapter 5 of this thesis.

53.8% of testable module QTL replicated in the original microarray data from GAinS. The

method has some limitations. The microarray was only designed to assay a certain subset of

genes, necessarily resulting in smaller modules that might not contain key genes required to re-

construct the signal of the original module eigengene. In addition, the method of quantifying

transcript levels is on a relative scale in the microarray, compared to the absolute scale of the

RNA-seq data. A future step for the replication analysis is to use an independent healthy cohort

and sepsis cohort with paired genotype and RNA-seq data.

Next steps for the module QTL analysis are to explore if any specific category of traits is en-

riched in the module QTL compared to the input set of SNPs and to validate the approach in larger

cohorts of gene expression in blood. The latter is especially relevant because the larger modules

had fewer associations than the smaller modules, likely because the cohort was underpowered

to detect small effects on a large set of genes. Other similar initiatives for sepsis, such as the

Molecular Diagnosis and Risk Stratification of Sepsis (MARS) consortium (Scicluna et al. 2017),

can also be used for further validation in the disease context. As with any QTL analysis in blood,

these module QTL may be confounded by differences in cell proportion. This affects sepsis stud-

ies due to the large expansion of neutrophils during the acute phase of the infection. Identifying

interaction module QTL (Zhernakova et al. 2017; Wijst et al. 2018), where the effect size is mag-

nified or diminished based on cell proportion, can account for this confounding and identify cell

types that are relevant to the QTL mechanism. Interaction module QTL for cell proportions may

also identify module QTL that are actually cell proportion QTL that were detected because gene

expression acted as a proxy for cell frequency across the samples.
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4 | Colocalisation and FineMapping

The aim of this chapter is to leverage patterns of association across various molecular traits to

gain mechanistic insight into variants associated with molecular expression. I colocalised eQTL

with pQTL and module QTL to identify shared and distinct signals underlying these associations.

I then used statistical fine mapping to refine the set of variants associated with each molecular

trait.

4.1 Colocalisation of cis-eQTL

Colocalisation was performed between various associations using the COLOC R package with a

predefined criteria for colocalisation1. Notably, 889 (6.0%) of the 14,938 independent cis-eQTL

lead SNPs were associated with more than one eGene (Figure 4.1). To test the hypothesis that

these loci represent a common functional element mediating gene expression of multiple nearby

genes, colocalisation was performed between all 1,467 pairs of eGenes that shared a lead con-

ditional cis-eQTL.
1Described in Section 2.4
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Figure 4.1: Number of eGenes sharing lead conditional cis-eQTL. 889 lead conditional cis-eQTL were shared be-
tween multiple eGenes. The distribution of shared eGenes showed that most (734) of the 889 cases involved sharing
of the lead conditional cis-eQTL between two genes. Up to 9 eGenes were found to share a common lead conditional
cis-eQTL.

Of the set of 889 lead conditional cis-eQTL that were shared between eGenes, 871 showed ev-

idence of colocalisation between all pairs of shared eGenes and two additional cis-eQTL showed

evidence of colocalisation between at least one pair of shared eGenes. The 871 lead conditional

cis-eQTL, representing 1,435 pairs of colocalisations, were used as a confident set of cis-eQTL

mediating the expression of multiple genes for further analysis. A notable example was the colo-

calisation of conditional cis-eQTL for members of the T cell receptor (TCR) β chain (Figure 4.2).

Under the hypothesis that these conditional cis-eQTL were genomic elements controlling ex-

pression of multiple genes, it was expected that certain modules may capture the co-expression

patterns of these genes. Indeed, 77 of the 871 lead conditional cis-eQTL with shared eGenes

were also module QTL. These module QTL were associated with 37 of the 48 modules with QTL.
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Figure 4.2: Colocalising cis-eQTL of components of the TCR β chain. These six eGenes shared the same lead
conditional cis-eQTL and all colocalise with each other. They are members of the TCR β chain that undergo somatic
recombination, including one constant region and five joining regions.

4.2 Colocalisation of cis-eQTL andmodule QTL

Many of the cases of colocalising cis-eQTL were found to be module QTL. To test if the same

causal SNP was responsible for both, I colocalised all cis-eQTL overlapping any of the 76 module

QTL loci detected from associations with the top 5 module eigengenes. Overall, this involved

testing 12,135 pairs of module eigengenes and eGenes, of which 824 colocalised. This included

a total of 361 eGenes and a total of 74 module QTL loci.
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Figure 4.3: Distribution of cis-eQTL colocalising with a module QTL. (Left) The median number of eGene-signal
pairs colocalising with a given module QTL locus was 4 (range 1 to 27). (Right) The median proportion of colocalising
eGenes originating from the colocalising module was 88.9%.

The module QTL loci colocalised with a median of 4 eGene-signal pairs (Figure 4.3). At 70 of

the 74 loci, at least one of the colocalising eGenes was in the module. The median proportion

of eGenes colocalising with a particular module QTL that were also present in the module was

88.9% (Figure 4.3). These results indicate that module QTL loci that colocalised with eGenes were

composed of common cis-eQTL shared by multiple co-expressed eGenes.

4.3 Colocalisation of cis-eQTL and cis-pQTL

To test for cases where the causal SNP may be shared between a pGene and its cognate eGene,

which would suggest a common functional element regulating molecular expression in different

tissues, colocalisation was performed between proteins and their cognate eGenes. Of the 269

proteins tested for pQTL, 258 were annotated for a unique gene and represented the proteins

that could have cis-pQTL, with the remainder not annotated with a gene. One protein, neutrophil

defensin 1 (DEFA1), was associated with two genes (DEFA1 and DEFA1B). Of the 260 total genes

for the 259 proteins, 97 were also eGenes. All 97 gene-protein pairs were tested for colocalisation,

of which 14 had evidence of colocalisation. Within this set, 4 proteins were pGenes with genome-

wide significant cis-pQTL (Table 4.1).
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Category Gene Protein Colocalisation Factor

eQTL and pQTL

Colocalisation

C4A Complement C4-A 0.992

IGLV6-57 Immunoglobulin lambda variable 6-57 0.99

MST1 Hepatocyte growth factor-like protein 0.722

CFH Complement factor H 0.707

eQTL and

Suggestive pQTL

Colocalisation

C1RL (Signal 2) Complement C1R subcomponent-like protein 0.985

COL1A2 Collagen alpha-2(I) chain 0.981

IGHG1 Immunoglobulin heavy constant gamma 1 0.975

C8G Complement component C8 gamma chain 0.938

HP Haptoglobin 0.912

F5 Coagulation factor V 0.897

C4BPA C4B-binding protein alpha chain 0.861

PGLYRP2 N-acetylmuramoyl-L-alanine amidase 0.795

A2M Alpha-2-macroglobulin 0.759

C1RL (Signal 1) Complement C1R subcomponent-like protein 0.752

PTGDS Prostaglandin-H2 D-isomerase 0.72

Table 4.1: Colocalisation of cis-eQTL with cis-pQTL. All proteins with cognate eGenes were tested for colocalisation.
Of the 14 proteins that colocalised, 4 were pGenes from the genome-wide scan for pQTL and 10 were potential pQTL
that we were not powered to detect. The colocalisation factor was calculated as PP4/(PP3 + PP4) based on the
posterior probabilities from COLOC.

The complementary analysis was to compare how many of the discovered genome-wide cis-

pQTL colocalised with cis-eQTL. Of the 23 pGenes with cis-pQTL, 4 pGenes colocalised with their

cognate eGenes as described above. 6 pGenes had a cognate eGene but did not colocalise. 2

pGenes had a cognate gene that was expressed but was not an eGene. Finally, 11 pGenes had a

cognate gene that was not expressed in whole blood leukocytes (Table 4.2).

Category pGenes with cis-pQTL

eQTL Present and Colocalisation C4A, IGLV6-57, HGFL, CFH

eQTL Present but No Colocalisation PLTP, FCGR3B, KLKB1, SERPINA1, C4B, ORM2

No eQTL but Expressed in Whole Blood Leukocytes APOE, F12

Not Expressed in Whole Blood Leukocytes PON1, FGL1, KNG1, HRG, CPN1, AGT, SERPINA10,

AHSG, ITIH3, CLEC3B, APOC4

Table 4.2: Proteins with cis-pQTL. Of the 23 pGenes with cis-pQTL, 4 colocalised with their cognate eGenes. Of the
rest, 6 did not colocalise, 2 did not have a cognate eGene, and 11 were not expressed in whole blood leukocytes.

The 4 pGenes that colocalised with their cognate eGenes (Table 4.2) represented instances

where the same regulatory elements may control abundance of mRNA in whole blood leukocytes

and protein in plasma. This may be due to secretion of proteins by leukocytes into the plasma,

due to necrotic release of proteins into serum, or due to common regulation across tissues. Com-
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plement factor 4 (C4) has two isotypes, encoded by either C4A or C4B. Interestingly, the C4A

cis-pQTL colocalise with the C4A cis-eQTL but the C4B cis-pQTL do not colocalise with the C4B

cis-eQTL, suggesting that the isotypes may be secreted or degraded via different pathways.
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Figure 4.4: FCGR3B locus cis-eQTL and cis-pQTL. FCGR3B (1), FCGR3B (2), and FCGR3B (3) are the primary, sec-
ondary, and tertiary signals respectively detected from the conditional cis-eQTL analysis for FCGR3B. None of these
cis-eQTL loci colocalise with the FCGR3B cis-pQTL locus.

The lack of colocalisation between eGenes and pGenes was also informative, such as the lack

of colocalisation between FCGR3B expression in leukocytes and FCGR3B abundance in plasma

(Figure 4.4). FCGR3B is a receptor for immunoglobulin G (IgG) that may be involved in the seques-

tration of IgG complexes without activation of neutrophils. The protein is primarily expressed on

the surface of neutrophils (Chen et al. 2012). A lack of colocalisation suggests that the produc-

tion and/or degradation of FCGR3B may occur in another tissue, and tissue-specific functional

elements in that tissue may affect FCGR3B abundance in plasma. Lack of colocalisation with

eQTL may also be due to different mechanisms underlying the variation in protein levels, such as
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splicing.
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Figure 4.5: ORM2 locus cis-eQTL and cis-pQTL. (Top) Only one conditional cis-eQTL signal was detected for ORM2.
(Bottom) This region did not colocalise with the ORM2 cis-pQTL.

ORM2 cis-pQTL are another example that did not colocalise with ORM2 cis-eQTL. ORM2 is

released into the plasma during the acute phase of infection and is secreted by the liver, although

there is also evidence of expression in endothelial cells and leukocytes (Sörensson et al. 1999).

It is involved in maintaining capillary permeability (Haraldsson et al. 1987).

4.4 Colocalisation of trans-pQTL

Two trans-pQTL loci were present in the same genomic region on chromosome 16 and three

trans-pQTL loci were present in the same genomic region on chromosome 14. To assess if an

underlying effect in cis also accounted for the effect on these pGenes in trans, colocalisation was
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performed between overlapping trans-pQTL and any cis-eQTL or cis-pQTL in the same region.
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Figure 4.6: Chromosome16 trans-pQTL.This figure contains association plots for the clusterin (CLU) and inter-alpha-
trypsin inhibitor heavy chain H1 (ITIH1) trans-pQTL. These two loci colocalised with each other.

The chromosome 16 locus contained trans-pQTL for clusterin (CLU) and inter-alpha-trypsin

inhibitor heavy chain H1 (ITIH1). The trans-pQTL for these two proteins colocalised (Figure 4.6).

There were two cis-pQTL loci in the same region for haptoglobin (HP) and haptoglobin-related

protein (HPR). Neither of the trans-pQTL loci colocalised with these cis-pQTL. There were 11 cis-

eQTL loci in the same region. EXOC6, which encodes exocyst complex component 6, colocalised

with CLU but not with ITIH1, making it an unlikely candidate for the underlying signal explaining

both trans-pQTL loci.
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Figure 4.7: Chromosome 14 trans-pQTL. This figure contains association plots for the complement factor B (CFB),
serotransferrin (TF), and proteoglycan 4 (PRG4) trans-pQTL. The CFB and TF loci colocalised with each other, but
neither locus colocalised with PRG4.

The chromosome 14 locus contained trans-pQTL for complement factor B (CFB), serotrans-

ferrin (TF), and proteoglycan 4 (PRG4). The CFB and TF trans-pQTL regions colocalised with each
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other, but neither colocalised with the PRG4 region (Figure 4.7). There were 6 cis-pQTL loci and

19 cis-eQTL loci that overlapped the trans-pQTL region, but none of them colocalised with any of

the trans-pQTL. The trans-pQTL are in a region of chromosome 14 containing many genes of the

extracellular serpin family, which are involved in immune functions. For instance, SERPINA1 is an

inhibitor of neutrophil elastase and SERPINA5 is an inhibitor of active protein C (Law et al. 2006).

The last trans-pQTL locus was on chromosome 8, associated with insulin-like growth factor

binding protein, acid labile subunit (IGFALS). There were no cis-pQTL loci and 16 cis-eQTL loci in

the region, but none of them colocalised with the trans-pQTL. This suggests that another func-

tional element, molecular QTL in a different tissue or context, or a different mechanism explains

this trans-pQTL locus.

4.5 Colocalisation with GWAS Associations

Due to the inclusion of trait-associated variants from the EBI GWAS Catalog when mapping mod-

ule QTL, multiple potential associations between module QTL and immune-related traits were

identified1. However, association of the same SNP with two different traits does not necessarily

imply the same underlying causal variant because of LD. To test for evidence of colocalisation, a

subset of studies with summary statistics from the EBI GWAS Catalog were curated (Table B.1)

based on matching ancestry and large sample size. The traits from these studies included four

serum protein levels, seven cell frequency measures, and three autoimmune diseases. Of these

14 traits, seven colocalised with at least one module QTL locus (Table 4.3).
1Discussed in Section 3.2.2
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Trait Group Trait Colocalising Module QTL

Serum

Proteins

C-reactive Protein (Inflammation Marker) None

Alanine Aminotransferase (Liver Function) Module 101 @ Chr 12 (55.0 Mb - 57.1 Mb)

Alkaline Phosphatase None

Interleukin 18 None

Leukocyte

Trait

Lymphocyte Count / Proportion Module 101 @ Chr 12 (55.0 Mb - 57.1 Mb)

Neutrophil Count / Proportion Module 84 @ Chr 6 (28.8 Mb - 34.0 Mb)

Module 103 @ Chr 12 (68.3 Mb - 70.4 Mb)

Monocyte Count / Proportion None

Eosinophil Count / Proportion Module 101 @ Chr 12 (55.0 Mb - 57.1 Mb)

Basophil Count / Proportion None

Platelet Count Module 63 @ 11 (46.5 Mb - 48.6 Mb)

Module 88 @ Chr 14 (64.3 Mb - 66.4 Mb )

Erythrocyte Count None

Autoimmune

Disease

Rheumatoid Arthritis None

Inflammatory Bowel Disease Module 47 @ Chr 3 (100.4 Mb - 102.5 Mb)

Module 71 @ Chr 3 (100.3 Mb - 102.5 Mb)

Systemic Lupus Erythematosus Module 84 @ Chr 6 (28.8 Mb - 34.0 Mb)

Table 4.3: Colocalisation of module QTL with GWAS variants. Some module QTL were variants from the EBI GWAS
Catalog. A subset of studies based on matched ancestry were used to test these regions for colocalisation with the
associated GWAS trait.

4.6 Statistical FineMapping

4.6.1 Conditional cis-eQTL

Statistical fine mapping takes into account both the association summary statistics and the un-

derlying LD structure to identify CSs of variants that are likely to contain the causal SNP. Similar

to the colocalisation framework, fine mapping is performed on a locus consisting of a set of vari-

ants in a genomic interval. The FINEMAP and SuSiE statistical fine mapping frameworks were

used to identify CSs for each conditional cis-eQTL region1. FINEMAP identified a CS for all of the

16,054 eGene-signal pairs. In contrast, susieR uses a measure of purity to prune uninformative

CSs and identified a CS for 11,055 (68.9%) eGene-signal pairs. Specifically, susieR prunes CSs if

the minimum absolute correlation between SNP genotypes in the CS is less than 0.5. Performing
1Described in Section 2.5
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the same pruning step on the FINEMAP results reduces the CSs to 10,332 (64.4%) eGene-signal

pairs. For the 16,054 eGene-signal pairs, the lead SNP was used to identify tagging SNPs in LD.

These tagging SNP sets represented a naive alternative to the CSs and served as a comparator

to determine how much uncertainty was introduced or reduced using the Bayesian fine mapping

approaches. The pruned FINEMAP and SuSiE CSs were smaller than the LD tagging SNP sets

(Figure 4.8).
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Figure 4.8: Credible set sizes. CSs were binned into five groups based on the number of variants present in the
CS (1, 2-5, 6-20, 21-50, and >50). The data consists of all 16,054 eGene-signal pairs for the LD tagging SNP sets and
FINEMAP CSs, the subset of 10,332 eGene-signal pairs for the pruned FINEMAP CSs, and the subset of 11,055 eGene-
signal pairs with SuSiE CSs.

The 10,332 eGene-signal pairs that were present both in the pruned FINEMAP and SuSiE CSs

were used to perform paired tests. Within this subset, pairs had a median of 14 SNPs in the

tagging SNP sets. In comparison, FINEMAP and SuSiE CSs had a median of 10 and 9 SNPs re-

spectively. Both FINEMAP and SuSiE generated CSs that were smaller than the tagging SNP sets

(Wilcoxon Signed Rank Test with Continuity Correction; p < 2.2 × 10−16). In addition, the SuSiE

CSs were smaller than the FINEMAP CSs (Wilcoxon Signed Rank Test with Continuity Correction;

p < 2.2× 10−16).

The 5,722 FINEMAP CSs that were removed by pruning (impure CSs) contained a median

of 474.5 SNPs. Surprisingly, the tagging SNP sets of the associated eGene-signal pairs had a

median of 8 SNPs. A paired test between the size of the CS and the size of the tagging SNP set

demonstrated that the impure CSs were significantly larger than the tagging SNP sets (Wilcoxon

Signed Rank Test with Continuity Correction; p < 2.2× 10−16). This suggested that the diffusion

of PIPs across a large number of SNPs in these CSs was not due to large LD blocks. The absolute

Z scores of the lead SNP associated with each eGene-signal pair were lower in the impure CSs

compared to the pruned FINEMAP CSs (Wilcoxon Rank Sum Test with Continuity Correction;

p < 2.2× 10−16), suggesting that the large CS size reflected uncertainty due to weak strength of

association between SNPs in the region and the expression of the eGene.
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4.6.2 Module QTL

There were 76 loci associated with module QTL. For each module, the locus was associated with

at least one of the top five module eigengenes. All possible eigengene-locus pairs were used in

fine mapping, resulting in a total of 380 pairs. Of these, SuSiE assigned CSs to 186 (48.9%) pairs.

When using the same purity filter for FINEMAP, 191 (50.3%) pairs had CSs. Unlike the conditional

cis-eQTL, the module QTL had not been refined using forward regression and thus potentially

contained more than one signal. To identify these conditional signals, both FINEMAP and SuSiE

were run assuming up to L = 10 signals. Thus, each eigengene-locus pair could have up to

10 CSs. The 174 eigengene-locus pairs that had CSs in both the SuSiE and pruned FINEMAP

sets showed high concordance in the number of independent signals detected (Figure 4.9). 103

(59.2%) of the pairs had one signal detected by both methods.
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Figure 4.9: Number of signals for module QTL. Both SuSiE and FINEMAP were set to detect up to L = 10 signals at
each module QTL locus. The number of signals detected at each locus by both frameworks were highly concordant,
with one signal detected at most module QTL loci.

Compared to the conditional cis-eQTL, the CS sizes of the SuSiE and pruned FINEMAP ap-

proaches were comparable with the LD tagging SNP sets (Figure 4.10). The median number of

tagging SNPs to the lead module QTL was 15, while the median number of SNPs in a CS was 14

for both the SuSiE and pruned FINEMAP approaches.
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Figure 4.10: Module QTL credible set sizes. CSs were binned into five groups based on the number of variants
present in the CS (1, 2-5, 6-20, 21-50, and >50). The data consists of all the LD tagging SNP sets and FINEMAP CSs,
the subset of 191 eigengene-locus pairs for the pruned FINEMAP CSs, and the subset of 186 eigengene-locus pairs
with SuSiE CSs.

4.6.3 pQTL

Of the 23 cis-pQTL loci, SuSiE assigned a CS to 13. FINEMAP, in contrast, assigned a CS to all

loci, even after pruning based on purity. Similar to the module QTL, both approaches were run

assuming up to L = 10 signals. Both FINEMAP and SuSiE detected one signal in 9 (69.2%) of the

13 pQTL loci present in results from both methods (Figure 4.11).
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Figure 4.11: Number of signals for cis-pQTL. Both SuSiE and FINEMAP were set to detect up to L = 10 signals at
each cis-pQTL locus. The number of signals detected at each locus by both frameworks were highly concordant, with
one signal detected at most loci.
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The FINEMAP and SuSiE CSs were larger than the tagging SNP sets for the 13 cis-pQTL loci

(Figure 4.12). The median number of tagging SNPs was 18, while the median number of SNPs in

a CS was 20 for both the SuSiE and FINEMAP approaches.
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Figure 4.12: Cis-pQTL credible set sizes. CSs were binned into five groups based on the number of variants present
in the CS (1, 2-5, 6-20, 21-50, and >50). The data consists of all the LD tagging SNP sets, all the FINEMAP CSs, and
the subset of 13 cis-pQTL loci with SuSiE CSs.

The individual trans-pQTL loci represented interesting examples to test whether fine mapping

could further resolve the underlying signal. The chromosome 8 trans-pQTL locus had 33 SNPs

tagging the lead SNP at R2 > 0.8. Both FINEMAP and SuSiE predicted only one signal at this

locus. Both reported one CS consisting of the same 27 SNPs. Both also reported the same

seven top SNPs with the highest PIPs. Unfortunately, the maximum PIP from either method was

not substantial (0.052 from SuSiE and 0.049 from FINEMAP).

The three trans-pQTL loci on chromosome 14 were for CFB, TF, and PRG4. The colocalisation

analysis revealed that the CFB and TF trans-pQTL colocalise with each other and neither colo-

calise with PRG4 trans-pQTL. SuSiE predicted 3 independent signals for CFB, while FINEMAP

predicted 9 even after pruning based on purity. SuSiE predicted 1 independent signal for TF

while pruned FINEMAP predicted 3 signals. However, both agreed on one independent signal

for PRG4. Both approaches assigned a CS consisting of the same two SNPs (rs28929474 and

rs112635299) to PRG4. SuSiE assigned a PIP of 0.777 to rs28929474. This SNP encodes a mis-

sense variant in SERPINA1, which codes for a serpin family antitrypsin that specifically targets

and inhibits the activity of neutrophil elastase (Law et al. 2006). Both methods assigned a CS con-

sisting of the same five SNPs to TF (rs11846959, rs1303, rs2073333, rs17090719, rs2070709),

although FINEMAP had two other CSs that SuSiE did not report. SuSiE calculated the maximum

PIP of 0.361 for rs11846959, which is a SNP in the intron of SERPINA1. The second highest PIP

of 0.330 was calculated for rs1303, which is surprisingly another missense variant in SERPINA1.

A very similar CS was assigned by both approaches to CFB, consisting of three SNPs by SuSiE

(rs11846959, rs1303, rs2073333) and two SNPs by FINEMAP (rs11846959, rs1303). In this case,
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SuSiE calculates a PIP of 0.555 for rs11846959 and FINEMAP calculates an even higher PIP of

0.867 for rs11846959.

The two trans-pQTL loci on chromosome 16 were for CLU and ITIH1. The trans-pQTL for

these two proteins colocalised with each other. Interestingly, SuSiE fails to identify any signals

at this locus and FINEMAP reports 10 independent signals for both loci after pruning by purity.

FINEMAP assigned a CS of three SNPs (rs11647844, rs12925901, rs12708920) to both CLU and

ITIH1, although the highest PIP for CLU (0.366) was for rs11647844 while ITIH1 had equal PIPs

(0.333) for all three SNPs. All three SNPs are noncoding and in the intronic region of PKD1L3.

4.7 Discussion

In this chapter, I performed multiple colocalisation analyses between various molecular traits. I

colocalised cis-eQTL with each other, cis-eQTL with module QTL, cis-eQTL with cis-pQTL, trans-

pQTL with each other, and module QTL with GWAS associations. I also performed fine mapping

of the molecular QTL in the GAinS cohort.

4.7.1 Colocalisation of QTL across Omics Layers

Colocalisation was used to identify regions of the genome that might be responsible for regu-

lating multiple traits. However, these results do not directly implicate a single causal model for

the effect of the locus on the measured traits. A natural hypothesis in the case of colocalising

cis-eQTL and cis-pQTL, for instance, is that the effect of the variant on protein expression is me-

diated through a direct effect on the expression of the cognate gene. However, variants may also

act on gene expression and protein expression through independent mechanisms, which is a

case of horizontal pleiotropy (Sanderson et al. 2022). An additional complication is that the gene

expression was measured in a heterogeneous tissue that is separate from the tissue in which

protein was assayed, although closely linked via secretion from leukocytes and interactions with

the coagulation and complement systems. Thus, a diverse set of mechanisms may explain the

effect of the same variant on gene and protein expression.

A future step for this analysis is to use Mendelian randomisation (MR) to specifically test

the causal relationships between traits that colocalise. Using cis-eQTL as instruments can be

challenging because independent signals tend to be close to each other and can suffer from con-

founders associated with the same haplotype. Furthermore, as evidenced by the colocalisation

analysis, cis-eQTL can be shared between neighbouring genes. New methods to account for
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these concerns such as transcriptome-wide Mendelian randomisation (TWMR) are being devel-

oped to estimate the effect of gene expression on outcomes of interest (Porcu et al. 2021).

4.7.2 Colocalisation and FineMappingMethods

The goal of colocalisation and subsequent fine mapping was to increase evidence for the effect

of genomic loci on molecular variation and to reduce uncertainty surrounding the causal variant.

These results can be used to identify variants that can be tested further in functional assays.

Evidence for colocalisation can be refined using fine mapping approaches. While conditionally

independent cis-eQTL were used for colocalisation, fine mapping procedures for module QTL,

pQTL, or GWAS associations were not used before performing colocalisation. Future work for

this analysis is to use fine mapping to refine colocalisation, such as using COLOC integrated with

the SuSiE framework (Wallace 2021).

Even after fine mapping, LD between mechanistically-independent causal molecular QTL lim-

its the ability of statistical methods. A recent experimental fine mapping approach of cis-eQTL

using a massively parallel reporter assay (MPRA) found that 17.7% of loci with strongly-linked

variants had more than one allelic hit. Thus, once sepsis-relevant functional elements have been

identified, experimental validation will be necessary. One method to design experiments for iden-

tified variants is to use variant effect prediction to identify potential mechanisms that can be

tested. Another important consideration is to identify which cell types might be relevant to the

variant, since cellular context is important to observe the effect in an experimental setup. Both of

these computational approaches are explored in chapter 5 of this thesis. Finally, colocalisation

was performed using the default priors and a liberal version of a threshold implemented previ-

ously (Nath et al. 2019). Future work is to test the sensitivity of the colocalisation results to this

threshold and to the prior probabilities of association and colocalisation.

Colocalisation analysis assumes independent cohorts with the same LD structure. In this

analysis, the QTL were derived from the same cohort and therefore necessarily share the same

LD structure. However, cis-eQTL and cis-pQTL were mapped using overlapping samples. The

cis-eQTL and module QTL were mapped on the same set of individuals. Thus, within-sample

correlation may confound the colocalisation analysis and cause false inflation of the posterior

probability of colocalisation. Overlapping cases are explicitly modelled in other approaches, such

as HyPrColoc (Foley et al. 2021), which may be used in the future to determine the extent to which

the assumption of independent samples affects colocalisation.

The module QTL remain challenging to interpret after colocalisation. A surprising number
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of module QTL colocalise with multiple cis-eQTL, suggesting that these regions may represent

functional elements that affect the transcription of multiple genes in a local genomic context.

Indeed, a prior analysis generated local co-expression modules that consisted of genes in the

same neighbourhood in the genome and observed that 45.6% of co-expressed eGene pairs had

evidence for colocalisation between cis-eQTL (Ribeiro et al. 2021). A more unlikely scenario is

that these regions represent true cis-eQTL for one gene in the module, which then regulates the

other genes in trans. It is unclear why such factors would be restricted to affecting genes in trans

in the local genomic context.

Taken together, these results suggest that it is possible to use modules as a method of aggre-

gating the signal from multiple genes to identify genomic elements that act in trans in relatively

small cohorts.
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5 | Dysregulated Immune Cell Types

The aim of this chapter is to identify specific cell types that are dysregulated in sepsis. I char-

acterised the accessibility landscape of stimulated immune cells using publicly available data,

since chromatin accessibility profiles are cell-type-specific and reflect regions of the genome rel-

evant to cell-type-specific functions. I also used variant effect prediction methods to nominate

potential mechanisms for the QTL.

5.1 Reprocessing ATAC-seq Data

I used ATAC-seq data for stimulated and unstimulated leukocytes to identify functionally relevant

regions of the genome1. In order to compare across all major cell types, I curated an immune

atlas from multiple publicly available data sets comprising primary immune cell types in unstim-

ulated and stimulated conditions (Corces et al. 2016; Calderon et al. 2019) and a neutrophil atlas

containing neutrophils under various stimulations (Ram-Mohan et al. 2021).

Both atlases contained data that had been previously processed. However, samples were

processed again for a few reasons. Both analyses used human genome build 19 (hg19) to align

their reads, while all of the QTL analysis was conducted on GRCh38. While the original immune

atlas contained a consensus peak set count matrix, the neutrophil atlas did not use a consensus

peak set across all their samples. Finally, cell-type-specific and stimulation-specific peaks were

not reported by either study.

The immune atlas consisted of 25 primary immune cell types from six broad lineages (Table

C.1). Leukocytes were assayed either as unstimulated or after a cell-type-specific ex vivo stimula-

tion. Although some cell types were tested with two different stimulations, all stimulated samples

were grouped together in downstream analyses as done in the original analysis (Calderon et al.

2019) due to a high degree of concordance between effects. The neutrophil atlas consisted of

three different experiments (Table C.2). In the first, neutrophils were stimulated ex vivo with six
1Described in Section 2.6
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different sepsis-relevant ligands. In the second, neutrophils in whole blood were stimulated with

E. coli for one or four hours. In the last, neutrophils in whole blood were stimulated with varying

concentrations of S. aureus.

5.2 Consensus and Cell-Type-Specific Peaks

I aligned ATAC-seq data from both the immune atlas and neutrophil atlas and processed it to

identify group peak sets1 (Figures D.5 and D.7). These group peak sets were merged for each cell

type to generate cell type peak sets in the immune atlas (Figure D.6).

Motif enrichment analysis2 identified motifs that were enriched in each stimulated group com-

pared to their respective control group (Figure 5.1).
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Figure 5.1: Motif enrichment in group peak sets. Motif enrichment was performed using SEA. Sequences in peaks
present in the stimulated groups were compared to sequences in peaks from their respective control groups for en-
richment of known motifs from JASPAR. Values shown here are log2 transformed enrichment ratios reported by SEA.
The union of the top 5 motifs from each group was used for the heatmap. Any enrichment that did not pass the sig-
nificance threshold were given a value of 0.

In both atlases, group peak sets were combined together to make a consensus peak set. The

consensus peak set from the immune atlas and neutrophil atlas consisted of 296,994 peaks and

140,923 peaks respectively. The immune atlas had larger peaks, with a median size of 555 base

pairs compared to the median peak size of 523 base pairs in the neutrophil atlas. A plurality of

peaks (52.2% in the immune atlas and 48.7% in the neutrophil atlas) were intronic (Figure 5.2).

28.2% of the peaks in the immune atlas and 31.0% of the peaks in the neutrophil atlas were
1Described in Section 2.6.3
2Described in Section 2.6.4
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intergenic. Fewer peaks were detected in exonic, promoter at TSS, and transcription termination

site (TTS) sites.
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Figure 5.2: HOMER consensus peaks annotation. HOMER was used to annotate peaks based on their proximity to
gene bodies. Peaks were annotated if they overlapped an exon, intron, promoter at a TSS, or the TTS. Any peaks not
overlapping these elements were considered intergenic.

5.3 Enrichment of cis-eQTL in Genomic Annotation

Since the conditional cis-eQTL were derived from gene expression in a heterogeneous tissue, vari-

ants may exert their effects through various immune cell types. A matched SNP approach was

used to test which cell-type-specific functional annotations across the genome were enriched for

conditional cis-eQTL1.
1Described in Section 2.7.1
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Figure 5.3: Enrichment in ENCODE cCREs. For each set of ENCODE cCREs, matched SNPs were used to generate
null distributions for the proportion of overlapping variants. Each point represents the observed overlap of lead condi-
tional cis-eQTL. The bars for each distribution represent the boundaries of the rejection region based on a significance
threshold of α = 0.0001. Enrichment was calculated as log2 of the ratio of the observed proportion of overlap to the
mean null proportion of overlap.

Conditional cis-eQTL were expected to be enriched in proximal cis elements such as promot-

ers and enhancers due to their association with gene expression. The cCREs in ENCODE are di-

vided into promoter-like signatures (PLSs), TSS-proximal enhancer-like signatures (pELSs), TSS-

distal enhancer-like signatures (dELSs), not TSS-overlapping and with high DNase and H3K4me3

signals only (DNase-H3K4me3), and not TSS-overlapping and with high DNase and CTCF signals

only (CTCF-only). As expected, enrichment was observed in PLSs, pELSs, and dELSs (Figure 5.3).

ChromHMM states were used to further refine these enrichment results based on more gran-

ular genome annotations from an 18-state model and across epigenomes from specific primary

immune cell types in blood (Figure E.1). Conditional cis-eQTL were enriched in genic enhancers,

active enhancers, and weak enhancers across all the epigenomes. Conditional cis-eQTL were de-

pleted in active TSS states, which are close to the TSS, and enriched in upstream and downstream

flanking TSS states that are farther away. Unsurprisingly, conditional cis-eQTL were enriched in

areas of transcription and depleted in inaccessible or transcriptionally repressed regions. There

was no meaningful variation in the pattern of enrichment across cell types.

To test if the conditional cis-eQTL were specific to the chromatin accessibility profile of any

cell type, the same approach was used to test for enrichment in group peaks from the immune

and neutrophil atlases (Figures 5.4 and 5.5). Conditional cis-eQTL are enriched in all conditions,

generally reflecting the observation that eQTL are enriched in accessible regions of the genome.
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Figure 5.4: Enrichment in immune atlas peaks. For group peak sets in the immune atlas, matched SNPs were used
to generate null distributions for the proportion of overlapping variants. Each point represents the observed overlap
of lead conditional cis-eQTL. The bars for each distribution represent the boundaries of the rejection region based on
a significance threshold of α = 0.0001. Enrichment was calculated as log2 of the ratio of the observed proportion of
overlap to the mean null proportion of overlap.
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Figure 5.5: Enrichment in neutrophil atlas peaks. For group peak sets in the neutrophil atlas, matched SNPs were
used to generate null distributions for the proportion of overlapping variants. Each point represents the observed
overlap of lead conditional cis-eQTL. The bars for each distribution represent the boundaries of the rejection region
based on a significance threshold of α = 0.0001. Enrichment was calculated as log2 of the ratio of the observed
proportion of overlap to the mean null proportion of overlap.

CHEERS integrates peak count information to detect small differences in the accessibility pro-

files of the same cell type under different stimulations. CHEERS was used to test for enrichment

of conditional cis-eQTL in the neutrophil atlas (Figure 5.6). A strong enrichment was detected for

neutrophil states induced by the ligands HMGB1, R848, and FLAG.
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Figure 5.6: CHEERS enrichment of cis-eQTL. CHEERS was used to test for enrichment of lead conditional cis-eQTL
and any tagging SNPs in stimulated neutrophil states.

A similar result to the matched SNP enrichment was obtained using GoShifter on the acces-

sibility profiles from both atlases (empirical p-value of 1×10−4 for all group peak sets). GoShifter

is a method that tests for enrichment of variants in genomic annotations using a local permuta-

tion strategy. GoShifter assigns an overlap score to each conditional cis-eQTL locus, which is the

empirical probability that the locus overlaps an annotation by chance. Loci that have low overlap

scores contribute strongly to the overall enrichment for the annotation computed by GoShifter.

This locus by annotation score matrix demonstrates that some loci were enriched in all group

peak sets (Figure 5.7). Some of the conditional cis-eQTL loci are also specific to the lineage or

cell type. Thus, although the cis-eQTL are enriched in all of the group accessibility profiles, there

are different cell and lineage specific loci that drive this enrichment in addition to a broad set of

cis-eQTL that are generally in more accessible regions of the genome.
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Figure 5.7: GoShifter overlap score matrix. This heatmap displays the matrix of locus by annotation overlap scores
from GoShifter. Each row represents one conditional cis-eQTL locus. A locus includes the lead SNP and any tagging
SNPs within 1 Mb with R2 > 0.8. The score displayed here is 1 minus the probability that the locus overlaps the
annotation by chance. Thus, a larger value implies a larger contribution to the overall enrichment p-value computed
by GoShifter.
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5.4 Partitioned Heritability

In comparison to enrichment methods that depend on overlap between annotations and trait-

associated SNPs, testing for enrichment of per-SNP heritability in annotations leverages the entire

polygenic architecture (Gusev et al. 2014). A variance component model was used to estimate the

overall SNP heritability of module eigengenes and the proportion of heritability explained by SNPs

within accessible regions from the immune and neutrophil atlases1. Patterns of enrichment and

depletion of per-SNP heritability demonstrated that module eigengenes were enriched in different

cell types (Figure 5.8). Broadly, the enrichment was stronger in the neutrophils compared to the

other cell types. The eigengene for module 23, which contains genes for antigen processing and

presentation (Table 3.1), was depleted in most cell types and specifically enriched in Naive B and

Treg cells. The eigengene for module 20, which contains genes associated with cytotoxic T cells

and NK cells (Table 3.1), was enriched in stimulated NK and T cells. This preliminary analysis

of partitioned heritability is a promising avenue to identify cell types associated with specific

dysregulated molecular phenotypes.
1Described in Section 2.7.2
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Figure 5.8: Partitioned heritability. This heatmap displays the log2 of the enrichment of per-SNP heritability
(h2
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2
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5.5 Variant Effect Prediction

My next aim was to determine any known or predicted functional consequences of the QTL to

identify potential mechanisms underlying their effect on molecular traits. Using integrative ge-

nomics, data from other experiments and large consortium efforts can be used to predict the

effect of variants in diverse contexts. Ensembl’s VEP is a tool that annotates variants with conse-

quences based on protein coding changes, proximity to genes and regulatory features, scores for

various variant prioritisation schemes, and prior literature. VEP was used1 to annotate lead condi-

tional cis-eQTL and predicted a consequence for all 14,938 unique lead variants. 14,319 (89.2%)

of the 16,054 unique cis-eQTL-eGene pairs were predicted to affect at least one transcript. Of

these, 8,121 (56.7%) were predicted to affect only one gene, but others had more than one pre-

dicted consequence (Figure 5.9). Of all the pairs with gene consequences, only 6,351 (44.4%)

were predicted to affect the associated eGene (Figure 5.9), suggesting that the conditional cis-

eQTL captured regulatory biology that is not predictable from variant position alone.
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Figure 5.9: VEP gene consequences. VEP was used to identify predicted consequences of lead conditional cis-
eQTL. While most variants were predicted to affect only one gene, some variants had multiple gene consequences.
Conditional cis-eQTL that were predicted to affect their associated eGene are coloured in blue.

1Described in Section 2.7.3
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The prior enrichment analysis revealed that the conditional cis-eQTL are enriched in regula-

tory elements across the genome. The VEP results identified specific regulatory consequences

for 4,687 (31.4%) lead variants for 5,048 regulatory features across the genome. 4,326 (92.3%)

variants with regulatory consequences were predicted to affect only one regulatory feature (Fig-

ure G.1). Most affected regulatory features were either promoter regions (35.4%) or flanking pro-

moter regions (35.6%). Some specific enhancers (6.4%) and TF binding sites (1.7%) were also

identified as potential consequences (Figure G.1).

Variation in genotype can affect gene expression by perturbing sequence motifs that encode

TF binding. VEP reports motif sequences in the reference genome that overlap the variant. 639

(4.3%) unique lead conditional cis-eQTL overlapped a total of 1,716 motif features. The cis-eQTL

that overlapped these motifs also changed the score of the motif based on the position weight

matrix (PWM) (Figure 5.10).
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Figure 5.10: VEP change in motif score. VEP reports the change in the motif score based on the PWM for motifs in
the reference genome that overlap a variant. This is the distribution of changes in motif scores of the lead conditional
cis-eQTL that overlap a motif.

The same analysis was repeated for lead variants from module QTL and pQTL loci. 75 (98.7%)

of the 76 lead module QTL had a predicted consequence. 64 (85.3%) lead variants were predicted

to affect between 1 and 4 genes (Figure G.2). 27 (36.0%) lead variants fell in regulatory features,
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which consisted primarily of promoters (Figure G.3). There were 32 regulatory features with an

overlapping lead variant, of which 16 (50.0%) were promoter regions (Figure G.3). 8 (10.7%) of

the lead variants were predicted to perturb motifs. A total of 12 motifs for 12 independent motif

features overlapped a lead variant (Table G.1). Of particular interest are modules 101 and 103,

which also colocalised with relevant immune traits (Table 4.3). The module 101 lead variant

perturbed a GATA binding site, and the module 103 lead variant perturbed a HNF4A binding site.

All 23 lead cis-pQTL had a predicted functional consequence. 21 (91.3%) of the 23 were pre-

dicted to affect at least one transcript. 13 (61.9%) cis-pQTL were predicted to affect 1 gene, 7

(33.3%) were predicted to affect 2 genes, and 1 (4.8%) was predicted to affect 3 genes. Similar to

the conditional cis-eQTL, only 15 (65.2%) of the 23 cis-pqtl were predicted to affect the pGene. 6

(26.1%) of the cis-pQTL were predicted to affect a total of 8 regulatory features, 2 of which were

CTCF binding sites and 6 of which were promoter-flanking regions. None of the cis-pQTL were

predicted to alter any motifs. VEP predicted consequences for 5 of the 6 trans-pQTL loci. All three

of the chromosome 14 trans-pQTL were predicted to affect SERPINA1. As discussed previously,

the PRG4 lead variant was a missense variant in SERPINA1, while the CFB and TF lead variant

was an intronic variant. Both of the lead chromosome 16 trans-pQTL were predicted to affect

DHX38 and PMFBP1 as noncoding variants. None of the trans-pQTL variants were predicted to

affect regulatory regions or motifs.

5.6 Integration

5.6.1 Module 92

Module 92 was discussed previously as an interesting gene network (Figure 3.8) consisting of

MHC class I molecules and butyrophilins (Table 3.1). Module 92 has module QTL on chromo-

some 6 and 16. Conditional cis-eQTL for NLRC5, a key regulator in this network, colocalise with

the module QTL on chromosome 16. The module QTL association on chromosome 16 has 2 CSs

from SuSiE consisting of one SNP each - rs821470 and rs12373120. The first variant (rs821470)

was also the lead variant associated with NLRC5, with the minor allele rs821470G being associ-

ated with increased expression. Overlap of the conditional NLRC5 cis-eQTL locus was observed

in the group peak sets of a few subsets of T cells (Figure 5.11).
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Module 92
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Figure 5.11: NLRC5GoShifter overlap scores. GoShifter overlap scores for the NLRC5 locus are displayed, with lower
scores indicating a lower probability of observing an overlap in the group peak set by chance.

The per-SNP heritability of the module 92 eigengene was enriched across all the group peak

sets. The enrichment was higher in neutrophil accessible regions than other leukocytes, similar

to patterns observed across the module eigengenes (Figure 5.8). The heritability was enriched

the most in control and stimulated naive Treg cells amongst the leukocytes in the immune atlas.
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Figure 5.12: Module 92 eigengene heritability. This heatmap displays the log2 of the enrichment of per-SNP heri-
tability (h2

SNPα/h
2
SNP) in each annotation for the module 92 eigengene.

5.6.2 Module 101

Module 101 is composed of 11 genes, 4 of which are protein coding genes - SUOX, TMEM50A,

RHD, and RPS26. This module was of interest because it colocalised with GWAS associations

for lymphocyte count, eosinophil count, and serum alanine aminotransferase level (Table 4.3).
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The module QTL for module 101 on chromosome 12 colocalise with conditional cis-eQTL for

two of the module members - SUOX and RPS26. In addition, the module QTL colocalise with

conditional cis-eQTL for GDF11, which is not in the module. The top module eigengene had one

CS from SuSiE with 6 SNPs. A 5’ untranslated region (UTR) variant in RPS26 (rs1131017) had the

highest PIP of 0.62. The GoShifter results for the RPS26 locus indicate that this locus is enriched

specifically in neutrophil accessibility states (Figure 5.13).

Module 101

0.00 0.25 0.50 0.75 1.00

Mean Overlap Score

Neutrophils No Yes

Figure 5.13: RPS26 GoShifter overlap scores. GoShifter overlap scores for the RPS26 locus are displayed, with lower
scores indicating a lower probability of observing an overlap in the group peak set by chance. All the neutrophil peak
sets have the lowest scores.

The minor allele in the QTL analysis was rs1131017C. This allele is associated with increased

expression of RPS26. Consistent with this, the variant falls in a binding site for GATA TFs (Ta-

ble G.1) and rs1131017C is predicted to increase the binding affinity of the TFs to the site. The

rs1131017C allele is also associated with reduced lymphocyte count, reduced alanine amino-

transferase, and increased eosinophil count.

5.7 Discussion

In this chapter, I catalogued the results of reprocessing publicly available ATAC-seq data. In addi-

tion, I identified regions of the genome that are enriched for cis-eQTL, including cell-type-specific

regions that can inform future inquiry of specific cis-eQTL. Finally, I have used a variant effect

predictor to identify potential consequences of the molecular QTL explored in this thesis and

integrated multiple analyses for a few modules of interest.

5.7.1 Enrichment of cis-eQTL

Enrichment tests for the various molecular QTL provide a method to compare these context-

specific QTL to observations about QTL made in cohorts of healthy donors, particularly those fo-
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cused on specific cell types. Similar to prior studies, the QTL were enriched in functionally-relevant

regions such as enhancers and promoters. They were also enriched in accessible regions in all

primary immune cell types. One of the goals of this analysis was to prioritise specific cell types

that may be dysregulated in the sepsis response. However, the heterogeneous nature of the tis-

sue meant that QTL were enriched uniformly in all primary immune cell types. The GoShifter re-

sults suggest that while some loci are enriched in accessible regions in all immune cell types and

drive the overall observed enrichment, certain subsets of eQTL are particularly enriched in cell-

type-specific accessibility profiles. The analysis of the heritability of module eigengenes similarly

reveals that heritability for various molecular programs is distributed within specific accessibility

profiles. Future efforts will focus on identifying subsets of context-specific QTL that are enhanced

in sepsis compared to healthy cohorts to identify more meaningful cell type enrichment.

5.7.2 Partitioned Heritability

Methods that partition heritability provide insights into which functional regions of the genome

contribute to the heritability of traits. Although well-established methods such as GCTA-GREML

(Yang et al. 2010) and LD score regression (Bulik-Sullivan et al. 2015) exist, they do not provide

the flexibility to account for repeat measurements from the same individuals. Thus, analysing the

heritability of module eigengenes required a custom model. Partitioned heritability may identify

enrichment without direct overlap of trait-associated variants with the annotation. For instance,

the NLRC5 conditional cis-eQTL locus overlapped accessible peaks in Treg but not naive Treg cells

(Figure 5.11). The partitioned heritability analysis suggests that although overlap was not ob-

served, the naive Treg cells may be more relevant to NLRC5 and module 92.

The partitioned heritability model failed for some annotations due to singular solutions, in-

dicating an issue of identifiability when estimating the variance components. This may occur

because the regions of the genome in the annotation or background set show little relatedness

(Ψα ≈ Iq or Ψᾱ ≈ Iq) or if the relatedness estimated using the annotation and background sets

is similar (Ψα ≈ Ψᾱ). Thus, the heritability model must be interpreted carefully on a case-by-case

basis. One method of testing which components are non-identifiable is to use a complementary

Bayesian Markov Chain Monte Carlo approach for the hierarchical model. Future work for this

analysis is to identify meaningful bounds on the heritability estimates using confidence intervals

to aid interpretability and to use Bayesian hierarchical models to identify the conditions under

which the LMM fails.
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5.7.3 Variant Effect Prediction

The variant effect prediction highlighted the need for high-throughput molecular expression ex-

periments to better understand context-specific regulation. Although VEP was able to identify

functional regions of relevance, only 44% of the lead conditional cis-eQTL and 65% of the lead

cis-pQTL were predicted to affect their cognate gene. Prediction of variant effects is also compli-

cated by the algorithms used. For instance, VEP was able to identify motifs that may be affected

by variants. However, these motifs were identified on the reference genome based on chromatin

immunoprecipitation sequencing (ChIP-seq) peaks in healthy cohorts (Zerbino et al. 2015) and

then tested for alteration by an overlapping variant. Thus, motifs that are generated by the al-

ternate allele or are context-specific are not captured in the initial set of motifs. The motif score

changes observed are likely biased to a reduction in motif strength because the gain-of-function

variants are not represented.

5.7.4 Integration

Recently, it has been suggested that eQTL and GWAS variants are fundamentally different due

to the differing method of discovery used for each (Mostafavi et al. 2022). One of the factors af-

fecting discovery is that GWAS variants are detected in diseased cohorts where trait-associated

variants are expected to have a higher allele frequency compared with healthy cohorts in which

eQTL are often mapped. Thus, it is critical to profile molecular expression and QTL in disease

cohorts to improve discovery of context-specific QTL. A future step for this analysis is to charac-

terise the constraint and regulatory complexity of the cis-eQTL and module QTL to make direct

comparisons with Mostafavi et al. 2022 and test if using disease-relevant cohorts identifies cis-

eQTL that better resemble GWAS variants.

5.7.5 Concluding Remarks

The aim of this thesis was to generate biological insights into the molecular heterogeneity under-

lying sepsis. I used leukocyte transcriptomics and plasma proteomics data from the GAinS co-

hort. Using previously characterised cis-eQTL and pQTL in addition to the module QTL, I demon-

strated multiple methods of nominating hypotheses for the effects of QTL on sepsis-relevant

molecular traits. The methods explored and developed in this thesis will be used to characterise

specific subsets of QTL variants that are enhanced in sepsis.
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A | PriorWork in GAinS

A.1 Genotyping

Genomic DNA was purified from whole blood or buffy coat and genotyped using three different

Illumina arrays. The Illumina HumanOmniExpress BeadChip (730,525 SNPs; Illumina, San Diego,

CA, USA) was used for 295 patients, the Infinium CoreExome BeadChip (551,839 SNPs; Illumina,

San Diego, CA, USA) was used for 655 patients, and the Infinium Global Screening Array BeadChip

(654,027 SNPs; Illumina, San Diego, CA, USA) was used for 307 patients.

A.2 Genotype Imputation

To increase the density of SNPs used in downstream analyses, genotypes were imputed based

on the initial array data. Samples were excluded from each batch based on discordant sex infor-

mation, genotyping missingness of greater than 2%, outlying heterozygosity rate, Hardy-Weinberg

equilibrium p-value less than 1×10−5, and high identity by descent (π̂ ≥ 0.1875) using PLINK (Pur-

cell et al. 2007). Sample mismatches with gene expression microarray data or RNA-seq were

detected and excluded using MixupMapper (Westra et al. 2011) and MBV from QTLtools (Fort

et al. 2017) respectively. Variants were also filtered in preparation for imputation using the Mc-

Carthy Group’s pre-imputation check tool (https://www.well.ox.ac.uk/~wrayner/tools/).

Genotypes from each batch were imputed into the Phase 1 Haplotype Reference Consortium

(HRC) Panel (McCarthy et al. 2016) using the Sanger Imputation Service. Briefly, genotypes were

phased using EAGLE2 (Loh et al. 2016) and imputed using PBWT (Durbin 2014). Variants with an

imputation score less than 0.9 were removed. Data from the three different batches were then

merged. After merging, variants with more than 2% missingness and MAF less than 1% were

excluded. The SNP coordinates were then lifted over to the GRCh38 using liftOver (Kuhn et al.

2013).
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A.3 RNA Sequencing

Whole blood leukocytes were isolated using LeukoLOCK (Thermo Fisher Scientific, Waltham, MA,

USA) depletion filter technology. RNA was extracted using the Total RNA Isolation Protocol (Am-

bion, Thermo Fisher Scientific, Waltham, MA, USA). RNA-seq was performed on 864 samples

from 667 patients from the GAinS study, as described previously (Cano-Gamez et al. 2022). NEB

Ultra II Library Prep kits (Illumina, San Diego, CA, USA) were used to prepare complementary DNA

(cDNA) libraries, which were sequenced on NovaSeq 6000 sequencers (Illumina, San Diego, CA,

USA). Reads were aligned to Ensembl GRCh38 version 99 (Yates et al. 2020) using STAR v2.7.3

(Dobin et al. 2013) and quantified using featureCounts (Liao et al. 2014). Reads were reassigned

based on individual patient imputed HLA types. Expressed genes were defined as those with at

least 10 reads in 5% of samples. Count data for expressed genes was normalised and trans-

formed into logCPM.

A.4 Microarray Gene Expression

Before RNA-seq was performed, the initial subset of recruited patients were assayed using mi-

croarrays (Davenport et al. 2016; Burnham et al. 2017; Cano-Gamez et al. 2022). This analysis

was performed for 676 samples (514 patients), of which 134 samples overlapped with the RNA-

seq study. Illumia HumanHT-12 v4 Expression BeadChip microarrays (Illumina, San Diego, CA,

USA) were used to quantify transcript levels. Processing of the microarray data has been de-

scribed previously (Cano-Gamez et al. 2022). Briefly, initial raw data processing was performed

using GenomeStudio. The vsn package was used for background subtraction, quality control,

transformation, and normalisation (Huber et al. 2002). Probes were filtered and measurements

were averaged across all probes assigned to a gene. Batch effects were corrected using ComBat

(Johnson et al. 2007).

A.5 Mass Spectrometry

The plasma proteome was assayed using high-throughput liquid chromatography with tandem

mass spectrometry (LC-MS-MS) based on a previously described method (COvid-19 Multi-omics

Blood ATlas (COMBAT) Consortium et al. 2022). This method was used to assay 1,680 samples

from 1,068 patients. No affinity depletion was applied to the patient samples. Mass spectrometry

data was acquired in PASEF mode from an Evosep One LC system connected to the TimsTOF
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Pro mass spectrometer (Bruker Daltonics, Billerica, MA, USA). A Fragpipe pipeline consisting of

Fragpipe 13.0, MSFragger 3.0 (Kong et al. 2017), and Philosopher 3.2.9 (Veiga Leprevost et al.

2020) was used to analyse the data. A library of human UniProt SwissProt sequences was used

to generate the Philosopher database. Label-free quantification was conducted using IonQuant

(Yu et al. 2020). Raw protein intensities were pre-processed through steps including protein and

sample filtering, normalisation, and imputation.

A.6 Mapping of eQTL

For each expressed gene from the RNA-seq data, variants that were in a 1 Mb window around

the TSS were tested. In addition to the genotype, seven genotyping PCs, 20 PEER factors (Stegle

et al. 2012), SRS status (SRS1 versus non-SRS1), diagnosis (CAP versus FP), and cell proportions

were used as fixed-effect covariates. The number of genotyping PCs was determined by iden-

tifying the elbow point in the scree plot. PEER factors were calculated based on all expressed

genes, holding out the seven genotyping PCs, SRS status, diagnosis, and cell proportions. The

number of PEER factors to use was determined by identifying the elbow point in the number of

cis-eQTL detected to balance the addition of more explanatory covariates with maximising cis-

eQTL discovery. Associated variants were identified using a hierarchical approach for multiple

testing correction as described previously (Huang et al. 2018). For each gene, local FDR correc-

tion was performed using eigenMT (Davis et al. 2016), which uses local LD structure to estimate

the effective number of tests performed. The corrected p-values of the lead SNPs were then ad-

justed using a Benjamini-Hochberg FDR correction. All genes with FDR-corrected lead SNPs with

p-values less than 0.05 were considered to have cis-eQTL. The global FDR-corrected threshold

was then used to determine the nominal p-value threshold at each gene locus. Finally, all variants

passing the nominal p-value threshold at a locus were considered cis-eQTL for the gene.

Gene expression is often under combinatorial regulation by multiple cis-regulatory elements.

Secondary cis-eQTL for a gene were discovered as previously described (Huang et al. 2018) for all

eGenes from the initial pass. For each eGene, the most significant eQTL discovered in the initial

mapping (lead eQTL) was added to the LMM as a fixed-effect covariate. All other SNPs in the cis

window of the eGene were tested for association based on the local FDR threshold determined

previously. Any top secondary eQTL discovered was added to the model as a covariate and the

process was repeated until no new secondary eQTL were detected. For the set of cis-eQTL de-

tected using this iterative forward regression approach, a backwards pass was performed by

leaving one cis-eQTL out at a time in the model and scanning the cis window to ensure that an
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association was detected and to identify the best signal SNP while accounting for all other sig-

nals. This final set of cis-eQTL were called conditional cis-eQTL. For all eGenes with conditional

cis-eQTL, summary statistics were generated for each signal SNP by using models conditioning

on all other signal SNPs for the eGene.

A.7 Mapping of pQTL

Similar to eQTL, pQTL are variants associated with protein expression. Due to the small num-

ber of proteins detected through LC-MS-MS, a trans approach was used when testing for pQTL

by testing all 4,276,557 SNPs genome-wide. Seven genotyping PCs, 34 protein expression PCs,

age, and sex were included as fixed-effect covariates. The number of protein expression PCs

was determined by choosing the minimum required to explain at least 60% of the variation in

protein expression. A genome-wide threshold of 1.86 × 10−10 was used based on a Bonferroni

FDR correction of 5×10−8 for 269 proteins. If a pQTL was detected within 1 Mb of the TSS of the

cognate gene of the protein, it was considered a cis-pQTL. Otherwise, the pQTL was considered

a trans-pQTL. Loci were defined by constructing 1 Mb windows around each pQTL and merging

intervals until a set of disjoint intervals was generated.
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Trait Group Trait Study (EBI GWAS Catalog Accession)

Serum Proteins C-reactive Protein (Inflammation Marker) GCST009777

Alanine Aminotransferase (Liver Function) GCST90013405

Alkaline Phosphatase GCST90013406

Interleukin 18 GCST90012024

Primary Cell Trait Lymphocyte Count / Proportion GCST90002388

Neutrophil Count / Proportion GCST90002398

Monocyte Count / Proportion GCST90002393

Eosinophil Count / Proportion GCST90002381

Basophil Count / Proportion GCST004618

Platelet Count GCST90002402

Erythrocyte Count GCST90002403

Autoimmune Disease Rheumatoid Arthritis GCST005569

Inflammatory Bowel Disease GCST004131

Systemic Lupus Erythematosus GCST003156

Table B.1: Summary statistics fromGWAS analyses. I retrieved GWAS summary statistics from the following studies
from the EBI GWAS Catalog to test for colocalisation between the module QTL and trait-associated SNPs.

Table B.2: EBI GWAS and module QTL overlap studies. These EBI GWAS studies that are relevant to IMDs contained
lead variants that were also module QTL.

Trait Group Trait Accession Modules

Susceptibility to

Infection

HIV-1 GCST000549 84, 92, 97

GCST000863 84, 92

GCST002101 84

GCST003183 84, 92

Chickenpox GCST004999 81

Shingles GCST005001 81, 84

Continued on next page

119



APPENDIX B. SUMMARY STATISTICS

Trait Group Trait Accession Modules

Epstein-Barr Virus GCST001812 84

GCST003339 84

Hepatitis B Virus GCST001150 84

GCST002068 84

GCST002879 84

GCST005004 84

Hepatitis C Virus GCST001815 84

GCST001867 84

GCST002316 84

GCST007633 84

GCST90018805 84

Mononucleosis GCST005002 84

Mycobacterium tuberculosis GCST005006 84

Pneumonia GCST005009 84

Scarlet Fever GCST005008 84

Serum Proteins C-reactive Protein

(Inflammation Marker)

GCST003680 84

GCST007614 84, 94

GCST007615 94

GCST009777 84, 103

GCST90018950 103

GCST90019499 103

Alanine Aminotransferase

(Liver Function)

GCST90013405 101

GCST90013663 102

GCST90018943 62, 101

GCST90020236 101

Aspartate Aminotransferase

(Liver Function)

GCST90011899 101

GCST90013664 102

GCST90019497 69

GCST90020237 63, 81, 101

Albumin GCST90018945 102

GCST90019493 69

Urate GCST008972 84, 92

GCST011119 69, 81, 94

Alkaline Phosphatase GCST90013406 69

GCST90019494 69, 106

Continued on next page
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Trait Group Trait Accession Modules

Creatinine GCST90018979 84

GCST90019502 94

Cystatin C (Kidney Function) GCST90019504 64, 94, 102

IgM GCST008575 81

IgA GCST008568 62

GCST011917 84

IgE GCST001316 81, 84

GCST002302 84

Beta-2-microglobulin GCST001863 84

Complement C4 GCST011833 84

IgG Glycosylation GCST001848 88

GCST004925 88

GCST005656 88

GCST009860 88

Interleukin 18 GCST90012024 89

Interleukin 1β GCST008209 97

Primary Cell Trait Lymphocyte Count /

Proportion

GCST004130 92

GCST004627 81, 84

GCST004632 69, 81, 97

GCST90001554 92

GCST90001560 84

GCST90001568 84

GCST90001684 92

GCST90001687 92

GCST90002316 97, 101

GCST90002320 92, 97, 101

GCST90002388 84, 92, 101

GCST90002389 69, 81, 84, 97, 103

GCST90085815 97

GCST004130 81, 84, 92

Neutrophil Count /

Proportion

GCST002557 84

GCST004623 81, 84, 101

GCST004629 84, 103

GCST004633 103

GCST90002351 69, 84, 103

GCST90002355 103

Continued on next page
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Trait Group Trait Accession Modules

GCST90002398 81, 92, 103

GCST90002399 81, 103

GCST90018968 103

GCST90056178 81, 84

Monocyte Count /

Proportion

GCST004609 103, 106

GCST004625 84, 103

GCST90002340 84, 103

GCST90002344 84, 103

GCST90002393 81, 84, 103

GCST90002394 75, 103, 106

GCST90018967 103

GCST90056177 81, 84, 103

Eosinophil Count /

Proportion

GCST004600 81, 84, 101

GCST004606 81, 84, 101

GCST004617 81, 84, 101

GCST007065 69

GCST009457 81

GCST90002298 84, 94, 99, 101

GCST90002302 84, 94, 101

GCST90002381 59, 81, 84, 101, 106

GCST90002382 81, 84, 101, 106

GCST90018733 84

GCST90018953 84, 101

GCST90056180 69, 81, 84

Basophil Count / Proportion GCST90056179 81, 84

Platelet Count GCST004599 59, 84

GCST004603 63, 84

GCST004607 84, 88

GCST90002346 62

GCST90002349 62

GCST90002357 63, 86

GCST90002358 81

GCST90002361 63, 86

GCST90002395 59, 84

GCST90002400 59, 86, 88, 91

GCST90002402 63, 84, 88

Continued on next page
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Trait Group Trait Accession Modules

GCST90018969 97, 102, 104

GCST90056183 84, 88

Erythrocyte Count GCST004008 69

GCST004601 91

GCST007069 69, 80, 82, 91, 102

GCST90002363 62, 69, 80, 82

GCST90002367 69, 82, 91, 102

GCST90002403 81, 102

GCST90018971 80, 102

Autoimmune Disease Rheumatoid Arthritis GCST000040 84

GCST000677 84, 99

GCST000679 99

GCST000917 84

GCST001042 84

GCST002318 62, 84, 99

GCST002323 84

GCST002357 84

GCST002433 84, 99

GCST002434 99

GCST005562 84

GCST005568 99

GCST005569 99

GCST006048 99

GCST006959 84, 99

GCST90013534 99

GCST90013684 99

GCST90018690 99

GCST90018910 99

Inflammatory Bowel Disease GCST000225 84

GCST000531 91

GCST001725 91, 94

GCST003043 91, 94, 99

GCST004131 71, 94

Coeliac Disease GCST000048 84

GCST000612 84

GCST002112 84

Psoriasis GCST000165 84

GCST000173 84, 92

Continued on next page
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Trait Group Trait Accession Modules

GCST000322 84, 92

GCST000833 84, 92

GCST000836 84, 92

GCST005527 84, 92

GCST008096 92

Systemic Lupus

Erythematosus

GCST000142 84

GCST000144 84

GCST000996 84

GCST001795 84

GCST002463 84

GCST003103 84

GCST003155 84

GCST003156 84

GCST003622 84

GCST004867 84

GCST005752 84

GCST011426 92

GCST011956 81, 84

GCST90020042 84

Multiple Sclerosis GCST000062 84

GCST000252 84

GCST000424 81, 84

GCST000425 84

GCST000593 84

GCST000716 84

GCST001341 84

GCST001459 84

GCST001891 84

GCST003566 84, 102

Alopecia Areata GCST000719 84, 101

GCST004866 84, 101

Vitiligo GCST000662 81, 84

GCST000692 99

GCST001509 101

GCST001670 101

GCST004785 99

Type 1 Diabetes GCST000038 101

GCST000043 101

Continued on next page
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Trait Group Trait Accession Modules

GCST000054 84

GCST000141 101

GCST000258 101

GCST000392 91, 101

GCST001191 91, 101

GCST007433 84

GCST008377 101

GCST009916 84

GCST90013445 62, 69

GCST90018925 101

Graves Disease GCST001200 84, 99

GCST001219 81, 97

GCST90018847 99

Myasthenia Gravis GCST90093465 84
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C | Publicly Available ATAC-seq Data

Of the 213 ATAC-seq samples, 175 came from Calderon et al. 2019. The Illumina HiSeq 4000

was used to sequence 159 samples and the Illumina NovaSeq 6000 was used to sequence 16

samples. Both sequencers were used to generate 76 base pair reads. Cells were isolated from

seven donors, of which the same four contributed a majority (90.9%) of samples. Six of the ATAC-

seq samples were from the Corces et al. 2016 study, with three donors contributing two samples

each. The Illumina NextSeq 500 sequencer was used to generate 150 base pair reads. The last

38 ATAC-seq samples of the 219 were from the neutrophil atlas. The Illumina X Ten sequencer

was used for these samples to generate 150 base pair reads. For the six ligands for ex vivo

stimulation, four donors were used. Two donors were used for the S. aureus stimulation, and

only one donor was used for the E. coli stimulation.
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Study Lineage Cell Type ATAC-seq

Corces et al. MYELOID Monocytes 6

Calderon et al. B Bulk B cells 7

Memory B cells 8

Naive B cells 7

Plasmablasts 3

CD8 T cells 7

Central Memory T cells 8

Memory Teff cells 8

Naive T cells 8

GD γδ T cells 7

CD4 Teff cells 7

Follicular Th cells 9

Memory Teff cells 8

Memory Treg cells 8

Naive Teff cells 9

Treg cells 8

Th1 precursors 8

Th17 precursors 7

Th2 precursors 8

Naive Treg cells 4

NK Immature NK cells 5

Mature NK cells 10

Memory NK cells 6

MYELOID Monocytes 9

Myeloid dendritic cells 3

Plasmacytoid dendritic cells 3

Table C.1: Samples in immune atlas. Samples from various primary immune cell types were present across the two
studies in the immune atlas. This table contains the number of samples from ATAC-seq experiments from each cell
type.
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Study Cell Type Experiment Stimulation ATAC-seq

Ram-Mohan et al. Neutrophils Ex vivo stimulation LTA 4

LPS 4

FLAG 4

R848 4

BGP 4

HMGB1 4

Control 4

S. aureus stimulation S. aureus (101 Cells) 1

S. aureus (103 Cells) 2

S. aureus (105 Cells) 1

Control 2

E. coli stimulation E. coli (1 hour) 1

E. coli (4 hours) 1

Control (1 hour) 1

Control (4 hours) 1

Table C.2: Samples in neutrophil atlas. Samples of neutrophils under various simulations were present in the neu-
trophil atlas. This table contains the number of samples from ATAC-seq experiments from each stimulation.
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D.1 Quality Control
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Figure D.1: TSS enrichment scores. The TSS enrichment score was used to filter samples that had a low signal-to-
noise ratio.

D.2 Comparison with Original Study

The original count matrix from the Calderon et al. 2019 study was retrieved from the Gene Ex-

pression Omnibus (GEO) entry for the study (GSE118189). Peak intervals from the original study

were converted from hg19 coordinates to GRCh38 coordinates using the liftOver function in

the rtracklayer R package (Lawrence et al. 2009). Peaks that were split during the conversion
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were discarded. The findOverlaps function in the GenomicRanges R package (Lawrence et al.

2013) was used to identify peaks from this analysis that overlapped peaks from the original study.

ATAC-seq alignment and peak calling was similar between this analysis and the initial analysis

of the data (Calderon et al. 2019). The consensus peak set in this analysis was built by merging

cell-type-specific peak sets and used a more stringent criteria for merging peaks across samples.

Furthermore, this analysis utilised fewer cell types than the original analysis. Unsurprisingly, the

consensus peak set in this analysis contained fewer peaks (296,994 peaks) than the original

analysis (827,922 peaks). Although the median width of peaks in this analysis (554 base pairs)

was slightly larger than the original analysis (490 base pairs), the overall distribution of peak

sizes was comparable between the two analyses (Figure D.2). The distribution of peaks across

the genome was also comparable between the two analyses (Figure D.3). Although reads were

aligned to different peak sets and genome builds, read counts were highly concordant between

overlapping peaks across the two analyses (Figure D.4).

Figure D.2: Distribution of peak widths. Although fewer peaks were present in this analysis, the peak width distribu-
tions from the original analysis of the immune atlas (top) and this analysis (bottom) are comparable.
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Figure D.3: Distribution of peaks across the genome. The distribution of peaks across the genome from the con-
sensus peak set of the original study (top) and this analysis (bottom) are comparable.
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Figure D.4: Correlation of read counts between peaks. Read counts of peaks overlapping between the original study
and this analysis are highly concordant. Spearman’s Rho was used as a measure of similarity.
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D.3 Peak Sets
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Figure D.5: Group peak sets from immune atlas. Group peak sets for each cell-condition pair from the immune atlas
contained sets of peaks present in specific cell types in different conditions. Plasmablasts, myeloid dendritic cells,
plasmacytoid dendritic cells, immature natural killer cells, and memory natural killer cells had no stimulated samples.
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Figure D.6: Cell type peak sets from immune atlas. Cell type peak sets were generated by merging group peak sets
from the same cell type.
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Figure D.7: Group peak sets from neutrophil atlas. Group peak sets for each cell-condition pair from the neutrophil
atlas contained sets of peaks present in neutrophils under different conditions.
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E | Roadmap Project Epigenomes

Group Epigenome Name Accession

HSC & B cell Primary monocytes from peripheral blood E029

HSC & B cell Primary B cells from peripheral blood E032

HSC & B cell Primary Natural Killer cells from peripheral blood E046

Blood & T cell Primary T cells from peripheral blood E034

Blood & T cell Primary T helper naive cells from peripheral blood E038

Blood & T cell Primary T helper cells from peripheral blood E043

Blood & T cell Primary T regulatory cells from peripheral blood E044

Blood & T cell Primary T cells effector/memory enriched from peripheral blood E045

Blood & T cell Primary T CD8+ naive cells from peripheral blood E047

Blood & T cell Primary T CD8+ memory cells from peripheral blood E048

Table E.1: Roadmap Project epigenomes. I retrieved the ChromHMM states from the 18-state models for the sam-
ples listed in this table.
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Figure E.1: Enrichment in ChromHMM states. For each ChromHMM state in various epigenomes, matched SNPs
were used to generate null distributions for the proportion of overlapping variants. Each point represents the observed
overlap of lead conditional cis-eQTL. The bars for each distribution represent the boundaries of the rejection region
based on a significance threshold of α = 0.0001. Enrichment was calculated as log2 of the ratio of the observed
proportion of overlap to the mean null proportion of overlap. The states are divided into enhancer regions (top), TSS
regions (middle), and transcription regions (bottom).
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F | Partitioned Heritability

These derivations are presented in Yang et al. 2010, Ge et al. 2017, and Min et al. 2022. Let Γ ∈

Rq×m be the genotype matrix for q individuals and m biallelic SNPs. The genotypes for each SNP

is centred and scaled so that Γij has mean 0 and variance 1. Using this matrix, Cov(Γik,Γjk) =

E[ΓikΓjk]− E[Γik]E[Γjk] = E[ΓikΓjk] = ϕij is the coefficient of relationship between the i-th and

j-th individuals. The GRM is thus defined as

Ψ =
1

m
ΓΓT

§ Assumptions for Additive Heritability Random SNP EffectModel

Let Γ(α) ∈ Rq×α be the genotype matrix of SNPs that fall within the annotation. Assume that the

first mα < α SNPs are causal SNPs for the trait. Similarly, let Γ(ᾱ) ∈ Rq×ᾱ be the genotype matrix

of SNPs that are outside the annotation. Assume that the first mᾱ < ᾱ SNPs are causal SNPs

for the trait. For the i-th sample from the k-th individual, the model is assumed to be

Yi =

mα∑
j=1

Γ
(α)
kj β

(α)
j +

mᾱ∑
j=1

Γ
(ᾱ)
kj β

(ᾱ)
j + bk + ϵi

Here, β(α)
j and β

(ᾱ)
j represent the causal effect sizes, bk represents the individual-level random

intercept that captures within-individual variance, and ϵi represents the residual variance. It is

assumed that

β
(α)
j ∼ N

(
0,

σ2
α

mα

)
β
(ᾱ)
j ∼ N

(
0,

σ2
ᾱ

mᾱ

)
bk ∼ N

(
0, σ2

R

)
ϵi ∼ N

(
0, σ2

)
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Then the expected variance of Yi is

Var[Yi] =

mα∑
j=1

(
Γ
(α)
kj

)2
Var

[
β
(α)
j

]
+

mᾱ∑
j=1

(
Γ
(ᾱ)
kj

)2
Var

[
β
(ᾱ)
j

]
+Var[bk] + Var[ϵi]

=
σ2
α

mα

mα∑
j=1

(
Γ
(α)
kj

)2
+

σᾱ
mᾱ

mᾱ∑
j=1

(
Γ
(ᾱ)
kj

)2
+ σ2

R + σ2

Since E
[
Γ2
kj

]
= ϕkk = 1, the expectation is

Var[Yi] = σ2
α + σ2

ᾱ + σ2
R + σ2

§ Matrix Form of HeritabilityModel

The LMM proposed in Section 2.7.2 can be written in matrix form as

Y = Xβ + ZB+ ZBα + ZBᾱ + ϵ

Let n be the number of samples, q < n be the number of individuals, and p be the number of fixed-

effect covariates. Y ∈ Rn×1 is the measured trait of interest with n samples, some of which are

repeated from the same individual. The design matrix X ∈ Rn×p and associated fixed-effect

vector β ∈ Rp×1 encode the expected value of the trait E[Y] = Xβ. The incidence matrix for

the random effects Z ∈ Rn×q is a block diagonal matrix that maps the individual-level random

effects to the samples.

In this model, I assume that the individual-level random intercept can be partitioned into the

sum of the additive genetic effect from SNPs in the annotation Bα, the additive genetic effect

from SNPs outside the annotation Bᾱ, and the individual-specific environmental effect B. The

covariance structures take the form

B ∼ N (0, σ2
RIq)

Bα ∼ N (0, σ2
αΨα)

Bᾱ ∼ N (0, σ2
ᾱΨᾱ)

which implies that the variance-covariance matrix of Y is partitioned as

Var[Y] = σ2
RZIqZ

T + σ2
αZΨαZ

T + σ2
ᾱZΨᾱZ

T + σ2In
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G | Variant Effect Prediction

SNP Module QTL Transcription Factors Score Change

rs1131017 Module 101 @ Chr 12

(55.0 Mb - 57.1 Mb)

GATA3, GATA4, GATA5 -0.169

rs4761234 Module 103 @ Chr 12

(68.3 Mb - 70.4 Mb)

HNF4A -0.059

rs1132812 Module 61 @ Chr 16

(29.2 Mb - 31.2 Mb)

ETV2::DLX3, HOXB2::ELF1, HOXB2::ELK3 -0.015

rs1023252 Module 62 @ Chr 1

(10.8 Mb - 12.8 Mb)

GCM1::MAX -0.028

ERF::MAX, FLI1::MAX -0.025

MYBL1::MAX -0.018

TEAD4::MAX -0.027

rs7191618 Module 91 @ Chr 16

(27.3 Mb - 30.0 Mb)

ETV2::HOXA2, FLI1::DLX2, HOXB2::ELF1,

HOXB2::ELK3, ETV2::DRGX, ELK1::HOXA1,

FLI1::DRGX, ETV5::DRGX, ETV5::HOXA2,

HOXB2::ELK1

0.016

rs11130192 Module 94 @ Chr 3

(47.7 Mb - 50.9 Mb)

POU2F1::ELK1 -0.094

TEAD4::RFX5 0.001

rs4759187 Module 96 @ Chr 12

(54.7 Mb - 56.7 Mb)

TFAP2C::MAX -0.008

rs13430254 Module 97 @ Chr 2

(71.2 Mb - 73.3 Mb)

ETV2::CEBPD, ETV2::TEF, ERF::CEBPD, ELK1::TEF,

FLI1::CEBPB, FLI1::CEBPD, ETV5::CEBPD

0.071

Table G.1: VEP module QTL motifs. The results from the VEP motif analysis of the lead module QTL variants. Some
motif features from Ensembl have multiple TFs.
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Figure G.1: VEP regulatory consequences. VEP was used to identify predicted consequences of lead conditional
cis-eQTL. (Left) Most variants affected one specific regulatory feature, although some affected two. (Right) Affected
regulatory features were divided by biotype based on their functional relevance.
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Figure G.2: VEPmodule QTL gene consequences. VEP was used to identify predicted consequences of lead module
QTL. Lead variants were predicted to affect between 1 and 4 genes.
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Figure G.3: VEP module QTL regulatory consequences. VEP was used to identify predicted consequences of lead
module QTL. (Left) Most variants affected one specific regulatory feature, although some affected two. (Right) Af-
fected regulatory features were divided by biotype based on their functional relevance.
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